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Abstract

Manipulation of wires has been a challenging task and main interest for many decades.
There have been many attempts to use visual perception and image segmentation to per-
form wire manipulation. However, wire manipulation in a cluttered environment where
there are many visual occlusions and uncertainties (due to poor lighting or shadows) is
hard. Giving a robot the ability to manipulate wires with high certainty is necessary and
requires rapid reasoning of its shape in real-time. Furthermore, after having this ability,
planning and control of wire manipulations is required. However, there is no efficient
ability to do so without visual perception.

Recent work has shown that the shape of an elastic wire can be defined by a very
simple representation. This representation can be interpreted as forces and torques at one
end of the wire. To begin with, we experimentally analyzed the theoretical foundation.
We deployed a dual-arm robotic system able to accurately manipulate an elastic wire. The
system does not require complex visual perception and is able to reason about the shape
of the wire by solely sensing forces and torques on one arm. Furthermore, we proposed
a full framework in which the mechanical properties of the wire are rapidly approximated
in real-time. Then, a simple control rule based on Force/Torque (F/T) feedback is used to
manipulate the wire to some goal or track a planned path.

However, the model used to develop the system relies on assumptions that may not
be met in real-world wires and does not take gravity into account. Therefore, the model
cannot be applied to any wire with accurate shape estimation. Additionally, as the model
does not consider the non-linearity of the F/T sensor, it is necessary to solve the non-linear
non convex inverse problem, i.e. from wire shape to the F/T state, which is computation-
ally expensive. As a consequence, we investigated the learning of a model to estimate the
shape of a wire solely from measurements of the F/T state. We propose to train a novel
learning model which can both act as a descriptor of the wire where F/T states can be
mapped to its shape and as a solver of the inverse problem where a desired goal shape
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can be mapped to an F/T state. Additionally, we trained a different model, with the same
dataset, which gives the robot the ability to execute a planned path.
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1 Introduction

The manipulation of thin elastic wires has been of interest for centuries [34, 28, 38, 46, 49].
Wire manipulation is considered a difficult task to operate in industrial environments. The
common approach to manipulate deformable objects is using two robotic arms [28, 48].
However, in order to efficiently and safely manipulate wires, one requires sufficiently
accurate models and control schemes. Once achieved, wire manipulation abilities for
robots would be practical in many applications. For instance, cable routing is still oper-
ated manually in automotive production lines [21]. Other applications include knot tying
[10, 42, 43, 52], surgical suturing [19], hot wire carving recently demonstrated by a robotic
system [14] or manipulation of cables using autonomous aerial vehicles [9]. Progress in
the robotic manipulation of elastic wires can also advance research in other manipulation
tasks such as the handling and automation of flexible material (e.g., sheet metal parts)
[39, 41], virtual reality and animation [27].

The configuration space describing the shape of an elastic wire has infinite dimension.
Moreover, a multitude of wire shapes exists for a single pose of the robot arms holding it
by the tips. These challenges have made the manipulation planning of a wire a challeng-
ing problem. The literature on path planning for elastic wires suggests exploring the set
of equilibrium configurations indirectly, by sampling displacements of grippers and using
numerical simulations to approximate their effect on the wire. This approach was devel-
oped in the work of Lamiraux and Kavraki [29] and was applied by Moll and Kavraki
[37] to the manipulation of deformable linear objects. Hermansson et al. [17] relaxed
gripping points constraints along an elastic harness while planning a collision-free path
for a sphere around a predefined central grip point. These methods and similar like in
[8, 51] use computationally expensive numerical methods that make them hard to perform
well. A different approach used in [15, 22] simplified the model of the deformed object
by reducing it to a sequence of rigid masses with springs. In such approach, the solution
is highly sensitive to the approximation which in turn affects the quality of the planning.
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In all the cited approaches, a feasible procedure to derive the free configuration space
was not clear at that time. Seminal work by Bretl and McCarthy [13, 12] relied on a
description of elastic rods in equilibrium as local solutions to a geometric optimal control
problem and showed that the configuration space of the wire is a six-dimensional smooth
manifold. The configurations space was also shown to be represented by the Force and
Torque (F/T) at the base of the rod. Such revelation enabled the use of sampling-based
planning algorithms to plan stable and collision-free paths [40, 44]. The work of Takano
et al. [47] uses a Force/Torque sensor to estimate the shape of a thin strip based on a
discrete model. Mechanical properties are not estimated and assumed to be known. While
reducing the problem to a finite-dimensional space, these approaches are highly dependent
on the resolution of the discretization and directly proportional to computation time. In
addition, this method focuses mostly on shape estimation and do not provide an efficient
ability to plan and control wire motions.

Estimating the shape of an elastic rod has also been discussed with visual perception
approaches. In [20], a simulated discrete elastic rod model is fitted on data obtained from
camera images. Similarly, a Fourier series was used to parameterize a cable segmented
from an image [55]. Borum et al. [11] tracked fiducial markers on a planar wire with a
camera and fitted them to the model of Bretl and McCarthy to estimate the wire’s shape.
In a more recent work, the instabilities of a rod were analyzed by identifying markers with
a camera and compared to a numerical simulation [50]. However, visual perception and
image segmenting of thin objects such as a wire in a cluttered environment is a challenging
task. Moreover, relying on continuous visual feedback limits the performance of various
tasks in which visual uncertainty (e.g., poor lighting or shadows) or occlusion may occur.
This may include manipulating the wire within a confined space such as a vehicle frame.

In this work, the goal was to use F/T feedback to perform a full wire manipulation
tasks, from estimation of wire shape, to planning a path and control it. The work was
divided into two parts described in the following subsections. First, we relied on the work
of Bretl and McCarthy and were able to propose a full framework for elastic wire manipu-
lation tasks. Second, we addressed issues from part one, regarding model assumptions, by
utilizing the learning methods.

1.1 Model based framework

In this part of the research, we propose a full framework to identify, plan and control the
motion of an elastic wire using a dual-arm robot without visual perception. Theoretical
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Figure 1.1: A dual-arm robot manipulating an elastic wire. The shape of the wire
is estimated solely using Force/Torque sensing on one gripper.
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analysis in [13] has shown that the configuration of a wire is, in fact, the force and torque
exerted at one end of the wire. Hence, we utilized a F/T sensor to measure the load
exerted on one gripper by the wire (Figure 1.1). We explored the sole use of the load
measurement to accurately estimate the shape of wire. Our framework first estimates
the mechanical parameters of the wire in real-time based only on F/T measurements and
gripper poses. The accuracy of the shape estimation based only on load sensing is then
analyzed over various wires. Furthermore, we propose a simple and novel control scheme
to reach a desired configuration and track a planned path. Inaccurate tracking of a planned
path may lead to wire instability and collision with obstacles. During a collision, the
model deviates from the basic assumptions of the model (i.e., two fixture points) and
predictions are not possible. Hence, accurate tracking of a path in a confined space is
essential. This was the first implementation and experimental analysis of the theoretical
foundation developed by Bretl and McCarthy [13] for shape estimation of spatial elastic
wires using F/T measurements with a full scale dual-arm robotic system.

1.2 Learning based framework

After the development of a model based framework for real-time shape estimation and con-
trol of a wire solely using a F/T sensor and without any visual feedback [36], we propose
a different approach to manipulate wires. Since the previous work relied on the analyti-
cal model devised by Bretl and McCarthy and since the model does not take into account
gravitation, non-linearity of the sensors or other uncertainties, a Neural-Network (NN) was
included to calibrate the F/T sensor to map between real sensed loads and theoretical ones
defined in the model. However, such process requires solving the inverse problem for each
sample where the theoretical load is computed given a measured shape. The computa-
tional complexity of such process is high and may take a very long time. Furthermore and
once calibrated the F/T sensor, real-time estimation requires repeated solving of a system
of ordinary differential equations to find the corresponding shape of the rod. Each solution
is computationally expensive and the update frequency remains low [44].

To cope with the computational complexity of computing the shape of a wire, previous
work has proposed to pre-compute a roadmap within the free configuration space of the
wire as part of a path planning problem [44]. However, the roadmap, acting as a descriptor
of the wire, represented only a small subset of possible wire configurations. In this part of
the research, we explore data-based approaches to estimate the shape of the wire given an
F/T measurement. A trained Neural-Network can be an higher-capacity descriptor of the
wire enabling rapid solutions for its shape.
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Figure 1.2: Shape estimation of a Nitinol elastic wire in two different configura-
tions using only a Force/Torque sensor on one gripper. The wire configuration on
the right is approximated and visualized in simulation (red curve), and compared
to markers tracked (white markers) with a motion capture system.

We propose the Supervised and Convolutional Autoencoder (SnCAE) to learn wire
shapes. We rely on the revelation of the work by Bretl and McCarthy where the shape of
the wire can be represented in a lower-dimension space. An F/T measurement, therefore,
is assumed to be an encoded state representation of the wire and can potentially be mapped
to its explicit shape. Hence, we train the SnCAE which is a Supervised Autoencoder [32]
constructed with convolutional layers. The SnCAE reconstructs the shape of the wire,
based on collected data, while also supervising the latent space to match corresponding
F/T states. Convolutional layers are included in order to embed the spatial shape of the
wire and ease the learning. Once trained, the decoder of the SnCAE is the shape estimator
and can rapidly map F/T states to wire shapes. Figure 1.2 shows an example where a
trained decoder is used for real-time estimation of the spatial shape of a wire based on
measured F/T and without visual perception. We test our approach on Nitinol and standard
electrical wires.

In addition to the decoder, the encoder of the SnCAE provides the solution of the in-
verse problem where an F/T state of the wire can be extracted from a desired shape. Hence,
planning in the space of F/T states can be performed while the goal state is extracted using
the encoder from a measured shape. To demonstrate planning with the learned model, the
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same training data is used to train an NN to map a F/T state to the corresponding pose
of one gripper relative to the first. Then, a motion planner is implemented where the en-
coder identifies goal F/T states and the decoder acts as a collision checker. To the best
of the authors’ knowledge, this is the first attempt to fully describe the shape of the wire
using a data-based model and based on F/T measurements. While additional work must be
done for generalization, our approach is a first step towards accurate description of wires
without dependence on limited analytical models.
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2 Background

2.1 Mathematical foundation

In the work of Bretl and McCarthy [13], it was shown that an elastic rod in static equi-
librium is a local solution to a geometric optimal control problem. The energy of an
elastic rod can be formulated as a cost function to be minimized in the form of a Lagrange
problem (integral part only). With some constraints, the problem can be solved using the
Pontryagin’s maximum (minimum) principle (Pontryagin et al. 1962 [26]). Since the de-
scription of the shape of the wire is in a 3D workspace and will be described in SE(3), our
problem will become a problem of optimal control on manifolds.

2.1.1 Manifolds

As a first step, we will define manifolds and smooth manifolds that will be used throughout
this work [33].

Definition 1. A manifold is a topological space which locally resembles an Euclidean
space Rn.

Intuitively, it is a generalization of curves and surfaces to higher dimensions.

Definition 2. A smooth manifold is a type of manifold which locally acts as a vector space
and thus, one can apply calculus on it, i.e. the notion of differentiability exists on it.

In particular, graphs of smooth maps between Euclidean spaces are smooth manifolds.

2.1.2 Diffeomorphism

The following definitions are fundamental to understanding manifolds and play a vital role
in our research.
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Definition 3. [53] A map F : U →V between topological spaces is homeomorphism if F

is invertible and both F and F−1 are continuous.

Definition 4. [33] If U and V are smooth manifolds and let F : U →V be a bijective map
that has a smooth inverse, then F is diffeomorphism.

In practice, diffeomorphism is isomorphism of smooth maniflods.

Definition 5. [33] If U and V are smooth manifolds, F : U → V is called local diffeo-
morphism if every point p ∈U has a neighborhood N such that F(N) is open in V and
F |N : N→ F(N) is diffeomorphism.

Definition 6. [33] If U and V are smooth manifolds and F : U → V is a smooth map, for
each p ∈U we define a map

dFp : TpU → TF(p)V (2.1)

called the differential of F at p.

Where T represents the tangential space (2.1).

Figure 2.1: Tangent space at point p ∈U

Lemma 1. [33] Let U,V be smooth manifolds, let F : U→V be smooth map and let p∈U :

• dFp : TpU → TF(p)V is linear.

• If F is a diffeomorphism, then dFp is an isomorphism

Lemma 2. [33] Suppose U and V are smooth manifolds, and F : U →V is a smooth map.
If p ∈U is a point such that dFp is invertible, then there are connected neighborhoods U0

of point p and V0 of F(p) such that F |U0 : U0→V0 is diffeomorphism.
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Based on these lemmas, we can now define two theorems that will assist us in the
following work.

Theorem 1. Let U and V be a smooth manifolds and let F : U →V be a map. F is a local

diffeomorphism if and only if the differential map of F is a linear isomorphism.

Proof. Suppose first that F is a local diffeomorphism. Given p ∈U , there is a neigh-
borhood N of p such that F is a diffeomorphism from N to F(N). It then follows from 1
that dFp is linear isomorphism. Conversely, if dFp is linear isomorphism at each p ∈U ,
then from 2 p has a neighborhood on which F restricts to a diffeomorphism into its image.

Theorem 2. dFp is represented in coordinate bases by the Jacobian matrix of F .

Proof. See [33, p. 62]

2.2 Wire representation

In this section, we briefly present the theoretical background from Bretl and McCarthy
[13]. Their work showed that each equilibrium configuration of a Kirchhoff elastic rod
[7] corresponds to a unique point in a subset of R6. Furthermore, it was shown that a
configuration is, in fact, the force and torque exerted at the base of the wire.

2.2.1 The configuration space of an elastic wire

We assume a wire of length L that is straight in the undeformed configuration with high
enough stiffness so that the effects of gravity can be neglected. Using t ∈ [0,L] to de-
note arc-length along the wire, the position and orientation of the wire at arc-length t are
described by an element q(t) of the special Euclidean group SE(3). The wire’s shape is
described by a continuous map q : [0,L]→ SE(3). given by

q(t) =

[
R(t) p(t)

0 1

]
, (2.2)

where R(t) : [0,L]→ SO(3) and p(t) : [0,L]→ R3 are curvature and position functions,
respectively. In the Kirchhoff model, the wire is allowed to twist and bend, but is un-
shearable and inextensible [7]. These constraints are enforced by requiring q to satisfy the
differential equation

q̇ = q(u1X1 +u2X2 +u3X3 +X4) (2.3)
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for some u : [0,L]→ R3, where

X1 =

[0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

]
, X2 =

[ 0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

]
, X3 =

[0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

]
,

X4 =

[0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

]
, X5 =

[0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

]
, X6 =

[0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

]
is a basis for se(3), the Lie algebra of SE(3).

We assume that each end of the wire is held by a robotic gripper. The position and
orientation of each point q(t) on the wire is represented relative to the gripper at t = 0
(referred to as the base gripper) such that q(0) = I, where I ∈ SE(3) is the identity matrix.
This establishes the initial condition for differential equation (2.3). Furthermore, let B ⊂
SE(3) denote the space of boundary conditions at q(L), the configuration of the gripper
holding the wire at t = L (referred to as the second gripper) is denoted by b ∈ B. Under
these conditions, the total elastic energy of the wire is

1
2

∫ 1

0
(c1u2

1 + c2u2
2 + c3u2

3)dt (2.4)

where c1 > 0 is the torsional stiffness of the wire and c2 > 0 and c3 > 0 are the bending
stiffnesses of the wire. Therefore, an equilibrium configuration of the wire is a local
minimum of the following problem:

min
q,u

1
2

∫ 1

0
(c1u2

1 + c2u2
2 + c3u2

3)dt

s.t. q̇ = q(u1X1 +u2X2 +u3X3 +X4)

q(0) = I, q(L) = b, b ∈ SE(3).

(2.5)

We define the set A⊂ R6 by

A= {a ∈ R6 : (a2,a3,a5,a6) 6= (0,0,0,0)} (2.6)

The set A is simply R6 with a two-dimensional plane removed. Each point in A corre-
sponds to an equilibrium configuration of the wire and a local minimum of the total elastic
energy of the wire. Proof for this can be viewed in Theorem 5 of Bretl and McCarthy [13].
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Thus, one can solve the following six ordinary differential equations

dµ1

dt
=

µ3µ2

c3
− µ2µ3

c2

dµ4

dt
=

µ3µ5

c3
− µ2µ6

c2
dµ2

dt
= µ6 +

µ1µ3

c1
− µ3µ1

c3

dµ5

dt
=

µ1µ6

c1
− µ3µ4

c3
dµ3

dt
=−µ5 +

µ2µ1

c2
− µ1µ2

c1

dµ6

dt
=

µ2µ4

c2
− µ1µ5

c1

(2.7)

on the interval t ∈ [0,L] with the initial condition µ(0) = a for a ∈ A. Next, functions
u1 : [0,L]→ R and u2,u3 : [0,L]→ R are the twisting and bending strains along the wire,
respectively, such that u = (u1,u2,u3)

T and ui = µi/ci for i = 1,2,3. Solving (2.3) with
the resulting u produces an equilibrium shape of the wire, denoted by the pair of functions
(q,u). Each (q,u) and the corresponding µ are completely defined by the choice of a∈A.
Therefore and in practice, A serves as the configuration space of the wire. The resulting
map is defined by C = Φ(A). The map Φ is homeomorphism and thus, a bijective, i.e.
for each (q,u) ∈ C there exists a unique a ∈ A such that (q,u) = Φ(a) and vice versa.
Furthermore, one may solve for matrix J : [0,L]→ R6×6, the following linear arc-length-
varying matrix differential equations

Ṁ = F(µ(t))M J̇ = GM+H(µ(t))J (2.8)

with initial conditions M(0) = I and J(0) = 0. Definitions for G, F(·) and H(·) are given
in [13]. Here also, the matrices M and J are completely defined by the choice of a ∈ A.

We denote the set of all a ∈ A that correspond to stable equilibrium configurations by
Astable. A configuration (q,u) is a stable equilibrium configuration if det(J(t)) 6= 0 for
all t ∈ (0,L]. Hence, we have a numerical test for each configuration a ∈ A to determine
which equilibrium configurations of the wire is inAstable. We define the free configuration
space A f ree ⊂ Astable to be the set of all a ∈ A that correspond to stable equilibrium
configurations of the wire and do not contain self-intersections. We next define the map
Ψ : C → B such that a configuration (q,u) is mapped to q(L). Given a path of the wire in
Cstable, the function Φ can be used to find the path of the robotic gripper that causes the
wire to follow the path in Cstable. In particular, the map

Γ :Astable→Bstable, (2.9)

where Γ = Φ ◦Ψ, takes a ∈ Astable to the corresponding pose of the second gripper b =

q(L) ∈ Bstable. Map Γ is a local diffeomorphism [13].

11



2.2.2 Physical meaning of a ∈ A

The resulting function µ : [0,L]→ R6 can be interpreted as the vector of internal forces
and torques along the wire. Therefore, we can describe the force and torque at point t

along the wire as

f(t) = (µ4(t),µ5(t),µ6(t))
T (2.10)

τ(t) = (µ1(t),µ2(t),µ3(t))
T , (2.11)

respectively, where µ j(t) is the jth component of µ(t) [13]. Consequently and since Φ is
injective, any equilibrium configuration a = µ(0) is completely defined by the force f(0)
and torque τ(0) at the base gripper. In other words, by solely measuring the load exerted
on the gripper using a F/T sensor, one can directly acquire the configuration a and, using
Φ(a), solve for the shape of the wire q. Similarly, the load measurement provides the
expected position of the second gripper b.

2.2.3 Dual-Arm Manipulation Planning Problem

Since we can now consider A as the configuration space of the wire during quasi-static
motion, motion planning can be done in this space. The natural approach would be to
implement sampling-based planning algorithms [24, 30]. However, practical applications
require planning for two robotic arms to manipulate the wire from one pose and shape to
another. In other words, the configuration space of the system is now the product space of
the robot’s joint space and A.

Let Q be the configuration space of the two arms formed by their joint space product,
and A be the configuration space of the wire as defined in (2.6). Thus, the configuration
space of the system is defined as Z = A×Q. At any time instant and for computational
purposes, a desired wire configuration a∈A can be considered as a rigid object. Thus, the
two robotic arms holding the wire by its endpoints must impose a closed kinematic chain
constraint

C(a,φ) = 0 (2.12)

for φ ∈ Q. Further, let Zb ⊂ Z be a restricted region due to obstacles, joint limits and
the wire’s infeasible set A\A f ree. Therefore, the free configuration set of the system is
Zo = Z \Zb. Thus, we define the free configuration set Z f ree as follows:

Definition 7. [45] Let Z f ree be the free configuration set of the robotic arms and wire such
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that
Z f ree = {(a,φ) ∈ Z : (a,φ) ∈ Zo, C(a,φ) = 0} (2.13)

is the set of configurations that satisfy the closed kinematic chain constraint, satisfy joint
limits and are collision-free.

We now define the ”classical” motion planning problem as generally addressed in lit-
erature:

Problem 1. Given start and goal configurations (as,φs) ∈ Z f ree and (ag,φg) ∈ Z f ree, find
a continues path

γ : [0,1]→Z f ree

such that γ(0) = (as,φs) and γ(1) = (ag,φg).

The above motion planning problem is a generic formulation to reach from one con-
figuration to another while avoiding collisions and in-stability of the wire.
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3 System

3.1 Hardware

Our system is composed of a Dual-arm robot manipulator, elastic wire, F/T sensor, custom
grippers and motion capture system as shown in Figure 1.1. We use a fifteen degrees-of-
freedom (DOF) Yaskawa Motoman SDA10F robot along with FS100 controller. Each arm
has a seven DOF with an additional DOF for rotating the body of the robot. Each arm is a
separated kinematic chain capable of maximum ten kilogram of payload. Both robot arms
can synchronously work together or simultaneous perform tasks independently.

On the robot left arm, we have mounted a six-axis F/T sensor, Bota SensONE. To
integrate the sensor and the robot arm, we designed and printed a connector to which the
sensor can be mounted on. The end-effectors (Figure 3.1), were custom designed to grasp
a circular rod using drill chucks. A set of V = 11 fiducial markers were placed along the
installed wire so that the OptiTrack motion capture system is able to provide ground-truth
measurements of its shape in real-time.

Figure 3.1: A chuck gripper has been added to each arm, allowing it to hold a
circular rod without slippage.
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3.2 Software

Data acquisition, control and communication were implemented using the Robot Operat-
ing System (ROS) over an Ubuntu machine. Action, perception and cognition are the three
principal modules of the system. To begin with, we need to be able to control robot actions
so that we can manipulate wires. Next, we must possess sensing capabilities in order to
communicate with the environment. Once we have both, we can develop algorithms to
manipulate wires.

3.2.1 Robot

To control the robot, we first needed to utilize two packages from [6] in order to stream
data and have a driver to the robot - motoman_sda10f_support and motoman_driver.
In order to include sensors and grippers in the transformation tree of the robot, we built a
description package that includes the robot and all of its additional components [3.2]. It is
important to notice that, in both arms, we defined the last joint as the contact point with the
cable, i.e. in the base gripper (where the F/T sensor is mounted) this frame is the reference
frame for the models [35]. After obtaining streaming, driver, and description, we could
visualize the robot in Rviz and perform manipulation using the driver and MoveIt.

3.2.2 Motion Capture System

Along with the wire markers, we have also added four fixed markers on the base gripper
to be tracked by the motion capture system as a rigid body. The rigid body was configured
in the Motive software provided by OptiTrack so its center of mass coincides with the
location of the reference frame described above and has the same orientation. Since a
wire is not a rigid body, all wire mounted fiducial markers were not classified as rigid
bodies. The data from the software was transmitted over the network. In order to read
this data from the network, we updated a package that captures all transmitted data and
automatically publishes the rigid bodies and individual markers in ROS [18]. This data
was added to the robot transformation tree by defining the four markers rigid body fixed
to the reference frame. As a ground truth for the wire shape, the positions of the fiducial
markers, measured relative to the rigid body and therefore to the reference frame, were
extracted from the data. This data was also visualized in Rviz.
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Figure 3.2: Robot transformation tree - each circle represents a frame, and the
arrows indicate the connections.
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3.2.3 Force/Torque Sensor

The F/T sensor needed to be calibrated in order to accommodate a gripper attached to
it. We used Bota SensOne provided open source code [1] with adjustments, to perceive
F/T and IMU readings. Additionally, we adjusted calibration package based on [2] ROS
package. With the F/T sensor calibrated, we were able to publish filtered data at up to 100
Hz.

3.2.4 Algorithms

The algorithms have been developed in three separate packages. The first one [5] is re-
sponsible for all robot motions (path and motion planning and control) and visualization in
Rviz. As the second package [4], there are models scripts that include optimization algo-
rithms and analytical wire shape estimation scripts. Finally, the third package [3] consists
of the development of all learning methods. figure 3.3 illustrates the data flow between the
packages.

Figure 3.3: Data flow between system packages where each box in the diagram
represents a package, while the arrows indicate the flow of data between them.
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4 Model Based Framework

In this chapter we describe the development of the manipulation framework while deploy-
ing the analytical foundation presented previously. Using the presented method we con-
ducted a various experiments to analyze wire properties approximations, pose estimations
and control accuracies. The work in this chapter was published in the IEEE Robotics
& Automation Letters [36] and presented at the IEEE Conference on Robotics and
Automation, 2022.

4.1 Method

Given two robotic arms with a Force/Torque (F/T) sensor mounted on one arm. The arms
hold a wire of length L and mechanical coefficients c = (c1,c2,c3)

T by its end-tips. We
aim to use the measurement ã ∈ A of the F/T sensor to approximate the shape of the wire
q̃. Motion of the wire is considered to be quasi-static in order to maintain equilibrium
configurations. In this section, we present the proposed framework accurately manipulate
a given wire. A scheme of the framework is illustrated in Figure 4.1. We first describe the
process to estimate the length and coefficients of a new wire solely using F/T measure-
ments and second gripper pose b. Then, we propose an easy to implement rule to control
the shape of the wire.

4.1.1 Perturbation mapping from A to B

Given ai ∈ Astable and its corresponding end-tip pose bi = Γ(ai). We define an homoge-
neous transformation matrix M ∈ SE(3) with δx ∈ R3 and exponential coordinates w ∈ R3

and δθ ∈ [0,π) such that

M(δb) =

[
ewδθ δx

0 1

]
, (4.1)
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Figure 4.1: Illustration of the control scheme. In an off-line operation, param-
eters estimation will estimate c and L, and update the model. Also, in an of-
fline process, a planner plans a path to some goal. In the online process and
given a goal configuration ag or a path γA to track, the controller will provide
the required perturbations of the second gripper. Feedback is acquired using a
force/torque sensor on the base arm whom provides information about the cur-
rent configuration ac of the wire.

where

δb =

(
wδθ

δx

)
. (4.2)

Matrix M is defined to map between two configurations in B such that

bi+1 = biM(δb) (4.3)

where perturbation to bi+1 will result in wire configuration ai+1. Map Γ is a local diffeo-
morphism being smooth and has a non-singular Jacobian matrix J(L). From Theorem 7
and equation (37) in [13], we get that

δb≈ J(L)δa (4.4)

where δa = ai+1− ai. Equation (4.4) states that matrix J(L) contains information about
the relationship between small changes in A and small changes in B. Therefore and given
a desired ai+1 in the vicinity of ai, the required perturbation δa in A can be obtained.
Then, by solving (4.4), one can use map (4.3) to compute the required perturbation in B in
order to move a wire from configuration ai to ai+1.

4.1.2 Real-time approximation of c and L

Given a measurement ã j of the F/T sensor, one can solve (q j,u j) = Φ(ã j) with (2.7) to
acquire the current shape q j of the wire. In order to solve (2.7), however, one must first
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estimate the mechanical coefficients vector c of the wire. Given a wire picked-up by two
robotic arms, the information available includes measurements of ã and b̃. We aim to
rapidly compute an estimation c̃ of c and the wire length L̃. We first formulate the cost
function to be minimized in order to estimate c. Recall that matrix J(L) is dependent on
the choice of c. Hence, (4.4) implies that differential measurements of a and b are required
in order to estimate c and L. We propose a real-time model identification process based
on such notion.

While moving the robot arms, a path Bc = {b̃1, b̃2, . . . , b̃m} of the second gripper rel-
ative to the base one is being recorded along with its corresponding vectors of force and
torque Ac = {ã1, ã2, . . . , ãm} exerted on the base gripper. Sets Ac and Bc are then used to
compute the differential setsA′c = {δ ã1,δ ã2, . . . ,δ ãm−1} andB′c = {δ b̃1,δ b̃2, . . . ,δ b̃m−1},
respectively, where δ ãi = ãi+1− ãi and δ b̃i is computed according to (4.2)-(4.3). Also,
let η = (c,L)T ∈ R4 be the vector of unknown parameters. Furthermore, we define matrix
J̄η(a) to be the Jacobian J(L) of configuration a and computed with η . An approximation
of η is the solution of the following problem

η
∗ = argmin

η

m−1

∑
i=1
‖J̄η(ãi)δ ãi−δ b̃i‖2

s.t. η > 0.

(4.5)

Problem (4.5) is non-linear and non-convex with regards to η and, therefore, requires
a global minimization algorithm. We employ a wire model identification process based
on the Particle Swarm Optimization (PSO) [25] algorithm. PSO is a meta-heuristic global
optimization algorithm that minimizes some cost function by iteratively improving candi-
date solutions. The algorithm maintains a population of particles in the search space, i.e.,
candidate solutions, each having its own cost value. Their position is iteratively updated
according to simple mathematical rules. The rules consider the momentary best local
and global cost, and are aimed to both explore new regions and exploit local information.
Since our goal is to estimate η in real-time, convergence to the best solution given some
amount of data must be fast. Thus, a small population size is used. The particles are con-
tinuously updated when new measurements are acquired to refine η∗. Moreover, to avoid
convergence to local minima, we randomly sample new particles over the search space.
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4.1.3 Control in A f ree

Given a wire goal configuration (q,u)g ∈ C, directly controlling the path of the wire in C
requires continuous visual feedback of its shape while the policy for moving the arms is not
clear [29]. Alternatively, we propose to control the motion in A with no visual perception
and based solely on F/T measurements. Given the current start configuration of the wire
as ∈ A f ree and goal destination ag ∈ A f ree, we aim for a control rule for the grippers to
manipulate the wire from as to ag. From perturbation mapping (4.4), we can formulate an
iterative correction rule for the second gripper pose relative to the base gripper as

δbi = KJ̄η∗(ãi)(ag− ãi) (4.6)

where ã0 = as. The control gain K > 0 is chosen to constrain motion of the wire to small
steps in order to enable frequent corrections of deviations. In addition, a small value
for K prevents fast manipulations that could hinder the quasi-static motion required to
maintain static equilibrium. According to (4.3), applying perturbation δbi to the current
configuration bi of the second gripper (relative to the base gripper) yields

bi+1 = biM(δbi). (4.7)

Note that since both arms share the same base frame, the relative motion is possible when
transforming it from base gripper frame to the shared base frame of the arms. The value
for ãi+1 is acquired once the second gripper is moved to bi+1. The process is repeated for
i = 0,1, . . . ,k until satisfying ‖ag− ãi‖< ε where ε > 0 is an accuracy distance threshold
in A.

When no uncertainties exist, the motion will be on a straight line ā(σ) = σ(ag−as)+

as for σ ∈ [0,1]. If as and ag are A-connected [13], i.e., ā(σ) ∈ A f ree is satisfied for all
σ ∈ [0,1], motion to ag along ā(σ) is feasible. However, controller (4.6)-(4.7) ignores
the kinematics of the dual-arm system and does not guarantee it can provide the required
motion. Hence, tracking a planned path where these are constrained is presented next.

4.1.4 Path tracking

Path γ(s) with s∈ [0,1] [Problem 1] can be divided into γA(s)∈A and γQ(s)∈Q. Planning
inZ f ree ensures that the path is feasible in terms of wire stability, obstacles and kinematics
of the arms.
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While the planning of path γ considers motion both inQ and A, the tracking accuracy
of the wire is prioritized for successful task completion. In open-loop control, however,
tracking would be conducted by solely moving the arms along path γQ without the ability
to reason about accuracy along γA . Therefore, positioning inaccuracies and uncertainties
may deviate the wire from the desired path γA in A f ree. Correcting deviations along γA

is not possible in such approach. Alternatively, we propose to ignore γQ and control the
motion to solely track γA using (4.6)-(4.7). Tracking would be performed on a set of N

discrete points {ā0, ā1, . . . , āN} ∈ γA(s) where āi = γA(
i
N ). The path inA f ree is now piece-

wise linear and motion between each two points is controlled as described in Section 4.1.3.
While we ignore the planned path γQ , if the model of the wire is sufficiently accurate,
the true path γ̃Q of the dual-arm system with (4.6)-(4.7) is expected to be approximately
similar such that γ̃Q(s)≈ γQ(s).

4.2 Experiments

4.2.1 Force/Torque sensor Calibration

Direct measurements of the F/T sensor do not reflect the pure force and torque that are
exerted by the wire due to gripper fabrication uncertainties and intrinsic non-linearity of
the sensor. Hence, we employ a machine learning based calibration process of the F/T
sensor. We use a Nitinol wire with known length and mechanical coefficient vector c
to collect labeled data. The wire is manipulated through various configurations while
recording for each the F/T measurement a j and the corresponding set of marker locations
P j = {p j,1, . . . ,p j,V} where p j,k ∈ R3 is the spatial position of marker k relative to the base
gripper. For each sample {a j,P j}, we compute the theoretical wire configuration a j by
solving the following minimization problem

a j = argmin
a

V

∑
k=1
‖p j,k−xk(a)‖2 (4.8)

where xk ∈ R3 is the closest point to p j,k on a wire (q,u) = Φ(a). Problem (4.8) is solved
off-line for each sample using PSO. Note that the solution of (4.8) is the inverse of Γ

where the respected a is found based on a desired shape of the wire. The final product is
a dataset comprised of K input samples {a1, . . . ,aK} and output labels {a1, . . . ,aK}. The
data is then used to train an Artificial Neural-Network (ANN) to map a perceived F/T
measurement to the respected model-based configuration a of the wire. This process is
done once. Then, the trained ANN can be deployed to acquire wire configurations in real-
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time and approximate c as described next. Videos of the experiments and demonstration
can be viewed online. 1

Table 4.1: Accuracy results for mechanical coefficients and length estimation of
a Nitinol wire

Diameter Coefficient True Estimated Relative Error (%)

2 mm

c1 (Nm2) 0.042 0.043 ± 0.006 2.4
c2 (Nm2) 0.055 0.056 ± 0.008 1.8
c3 (Nm2) 0.055 0.056 ± 0.008 1.8
L (m) 0.630 0.635 ± 0.012 0.8

3 mm

c1 (Nm2) 0.214 0.215 ± 0.008 0.5
c2 (Nm2) 0.278 0.279 ± 0.011 0.4
c3 (Nm2) 0.278 0.279 ± 0.011 0.4
L (m) 0.820 0.811 ± 0.013 1.1

Figure 4.2: Mean error and standard deviation for approximating c and L for
the 3 mm diameter wire with regards to the number of sample points.

4.2.2 Approximation of c and L

We have conducted an approximation of two Nitinol wires of 2 mm and 3 mm diame-
ter with known mechanical coefficients. The second gripper was randomly moved while
adding poses to Bc and F/T measurements toAc. The sampling frequency is 10 Hz. Using

1 https://www.youtube.com/watch?v=1nOaoQ92zoofeature=youtu.be
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Figure 4.3: Time to estimate c and L for the 3 mm diameter wire with regards to
the number of samples taken.

PSO with 20 particles, vector η was approximated by solving (4.5) while collecting data
in real-time. Table 4.1 presents the average of the approximated values and their relative
error after 10 repeated trials and for only three sampled points in {Ac,Bc}. Figure 4.2
presents the approximated values for the 3 mm diameter wire with regards to the number
of recorded data points in {Ac,Bc}. The results show that with only two samples, the
approximation accuracy is high. Adding more data points does not provide significant
accuracy improvement. In addition, Figure 4.3 reports the convergence time to reach a
solution given a number of samples. The results show that an accurate real-time approxi-
mation is available after only three seconds of motion while sensing only F/T and second
gripper poses.

4.2.3 Wire shape estimation

In this section, we analyze the accuracy of shape estimation using the F/T measurements.
Four wires are tested including three Nitinol wires of different lengths and diameters, and
an electric cable made of copper with a polymeric insulator. For each wire, the mechanical
properties were estimated. Then, pose estimation was averaged for 50 configurations in
A f ree. Table 4.2 presents the mean and standard deviation shape errors for the tested
wires. The results show that Nitinol wires acquire high shape estimation accuracy since
their mechanical properties comply with the assumption described in Section 2.2.1. On
the other hand, the electric wire is not straight in the relaxed form and highly affected by
gravitation which is not included in the model. Hence, the electric cable does not comply
with the assumptions of the model and large errors are exhibited. Figure 4.4 shows an
example of one pose estimation with Nitinol wire number 3.
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Table 4.2: Accuracy results for shape estimation of various wires

Num. Wire
type

Diameter length Mean Error
(mm) (mm) (mm)

1 Nitinol 2 630 5.72 ± 2.58
2 Nitinol 3 910 7.42 ± 1.33
3 Nitinol 3 820 6.55 ± 0.87
4 Electric 3 920 52.3 ± 11.5

Figure 4.4: Shape estimation of a wire configuration using only F/T measure-
ment. The circular blue markers are the ground-truth measured using a motion
capture system and the solid curve is the estimation. Average shape estimation
error along the wire is 5.81 mm.

4.2.4 Control

In the first control experiment, we test the accuracy when manipulating the wire to given
goals using (4.6). Hence, we sample 30 random start and goal configurations in A f ree

which are known to be A-connected. Once the system is at a start configuration, the
controller is applied to reach the corresponding goal. The controller gain was set to K =

0.2. We compare the control to an open-loop setting in which a straight line path from as

to ag is computed along with the corresponding gripper poses. Then, the gripper poses are
rolled-out without any feedback. Furthermore, we test the performance in a case where the
positioning of the grippers is inaccurate. Thus, we add random normal noiseN (0,10) mm

and N (0,3◦) to the position and orientation, respectively, of the control output δbi in
(4.6). Hence, we add inaccuracies to the relative pose between the two grippers. Table 4.3
presents results of the mean shape error along the wire for open and closed loop control
with and without adding noise. Without noise, the high accuracy of the robotic arms
provides low errors in open-loop. However, inaccuracy of the arms (with noise) leads to
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Table 4.3: Mean accuracy for reaching goals

Open-loop (mm) Closed-loop (mm)
without noise 4.80±1.19 9.67±3.02
with noise 17.35±9.54 9.11±3.62

Figure 4.5: Wire manipulation towards the goal in theA with open (dashed) and
closed-loop (solid) control. Dotted lines illustrate the nominal straight line path
in A.

poor goal reach. On the other hand, the proposed closed-loop control over A shows the
ability to compensate these inaccuracies and maintain accuracy with and without noise.
Figure 4.5 shows an example of motion towards a goal in the A in open and closed-loop
control. Closed-loop control exhibits smoother motion along a straight line and better
accuracy at the final configuration. Figure 4.6 shows the corresponding wire shape errors
in C relative to the shape (q,u)g = Φ(ag). The figure also shows (in dotted lines) the error
for moving along a straight line in B without considering F/T measurements. Closed-loop
control clearly reaches closer to the desired shape. It is important to note that, while the
control converges to the desired configuration inA, the error in C did not converge to zero
due to inaccuracies of the F/T sensor calibration model described in Section 4.2.1. Overall,
the results exhibit good accuracy in reaching various goals with control regardless of arm
inaccuracies.

We now experiment the tracking of a path with open and closed loop control as dis-
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Figure 4.6: Wire shape error during manipulation to the goal ag with open
(dashed) and closed-loop (solid) control. Dotted curve show the error for an
open-loop while tracking a straight line path in B.

Table 4.4: Accuracy of path tracking

Open-loop (mm) Closed-loop (mm)
Mean 11.01±5.21 6.22±1.83
Max. 31.51 11.62

cussed in Section 4.1.4 while including the same noise. We have implemented the asymp-
totically optimal variant of the Rapidly-exploring Random Tree, i.e., RRT∗ [23]. The
RRT∗ planner ensures that the path from as to ag is inA f ree while minimizing path length.
For a set of ten arbitrary start and goal configurations, we have planned and rolled-out the
paths in open and closed loop control. Table 4.4 presents the mean and maximum shape
error along the paths. Furthermore, Figures 4.7 and 4.8 show an example of tracking one
path. The fine tracking along the planned path with closed-loop control is shown compared
to non-smooth and erroneous tracking with open-loop. Snapshots of the motion with pose
estimation are shown in Figure 4.9. Here also, the small tracking errors in closed-loop
are imposed by accuracy of the F/T sensor calibration. Nevertheless, these experiments
validate the ability of the proposed closed-loop control to maintain good tracking along
planned paths.
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Figure 4.7: Tracking of a path in A planned using RRT∗ with open (dashed)
and closed-loop (solid) control. Black dashed lines illustrate the planned path to
track in A.

Figure 4.8: Average shape error of the wire during path tracking with open and
closed-loop control.

4.2.5 Demonstration

We have conducted a demonstration in which the robot must manipulate the wire through
a narrow passage formed by two obstacles. The width of the narrow passage is 50 mm.
Two start and goal configurations were chosen and a path between them was planned using
RRT∗. Then, the path was rolled-out with open and closed-loop control in real-time for
ten attempts each. Here also, normal noise was included similar to previous sub-section.
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Figure 4.9: The wire is controlled to track a path in A f ree planned with RRT∗.
White circles are the measured markers along the wire and the cyan curve shows
the current pose estimation based on F/T sensing. Yellow curves indicate inter-
mediate configurations to pass along the motion while the green curve illustrates
the goal. Mean shape error across the manipulation is 6.2mm.
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Figure 4.10: Roll-out of the path between the obstacles in open (dashed) and
closed-loop (solid) control. Black dashed lines illustrate the planned path to track
in A. The roll-out in open-loop collided and the F/T measurements significantly
deviated from the planned path in A.

Failure is declared when the wire collides with an obstacle and can be detected when large
deviations in the F/T measurements occur in a short period of time. Figures 4.10-4.11
show the path tracking of roll-outs in open-loop with a collision and closed-loop control.
Once the wire has collided, the F/T measurements include contact loads and it is no longer
possible to estimate the shape of the wire in order to return to the path. Due to better
tracking with control, the success rates for tracking the path with open- and closed-loop
control are 30% and 90%, respectively. Figure 4.12 shows snapshot of one successful roll-
out with closed-loop control. The demonstration results validate the accurate tracking and
emphasize the importance of accurate path tracking in cluttered environments.
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Figure 4.11: Average shape error of the wire during path tracking between the
obstacles with open and closed-loop control. The roll-out in open-loop collided
and the motion significantly deviated from the planned path.

4.3 Practical considerations

Throughout this study, we drew upon the analytical model developed by Bretl and Mc-
Carthy. As the model does not incorporate gravitation, non-linearity of the sensors, or
other uncertainties, a Neural-Network (NN) was employed to calibrate the F/T sensor to
map between the real sensed loads and the theoretically defined ones. However, such
a process has the disadvantage of requiring the solution of the inverse problem for each
sample, given a measured shape, to compute the theoretical load. Such a process is compu-
tationally complex and may take a very long time to complete. Additionally, once the F/T
sensor has been calibrated, it is necessary to repeat the solution of an ordinary differential
equations system in order to determine the corresponding shape of the rod. Each solution
is computationally expensive and the update frequency remains low [44]. Furthermore,
the model assumes super elastic wire, so the system cannot deal with real-world wires,
such as the electric wire. In the following chapter, these issues are addressed.
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Figure 4.12: Snapshots of the robot manipulating the wire between obstacles in
closed-loop control with F/T feedback.
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5 Learning Based Framework

In this chapter, we will continue addressing the issues discussed in previous chapter, by
using Learning methods to manipulate various wires. We begin by highlighting the chal-
lenges we face and describing our methods for addressing them. In addition, we present the
results of a series of experiments in which we analyzed the performances of our models.
The work in this chapter was submitted for publication in the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2022.

5.1 Method

An elastic wire of length L and mechanical coefficients c = (c1,c2,c3)
T is held by a dual-

arm robotic system. Furthermore, a Force/Torque (F/T) sensor is mounted on one arm and
measures the load a ∈ AFT exerted by the wire where AFT is the space of measured wire
F/T states. We wish to estimate a wire shape given the load. In other words, we explore the
learning of a discrete map Γ :AFT → R3× . . .×R3. Hence, given a measurement a∈AFT

of the F/T sensor, the map will output a set of m points Γ(a) = {p1, . . . ,pm} along the wire
where p j = p( j

m) ∈ R3.

As discussed in previous chapter, a measurement a of the F/T sensor cannot directly
be applied to extract the shape with model Φ(a) (4.2.1). Solving inverse problem (4.8)
for each sample is computationally expensive. Furthermore, in order to acquire a fine
calibration model, one must collect a large amount of samples and with high variance.
Such process may take very long time while insufficient data yield low accuracy as will
be demonstrated in the experiments. In this work, we take a different approach where we
directly map F/T measurements to wire shapes and, by that, incorporate all uncertainties in
the model. Therefore, explicit knowledge of coefficients c is not required nor the tedious
solution of inverse problem (4.8).
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5.1.1 Data Collection

Training data is collected by sampling M wire shape along with their corresponding F/T
measurements. Sampling a continuous representation of the wire shape can be done in
several ways including shape segmentation from RGB cameras or from a depth camera if
the wire is thick enough. In this work, a motion capture system tracks V reflective markers
fixed along the wire. While the approach provides a coarse resolution along the wire, the
marker positions are acquired with high accuracy. Hence, sample j taken from the system
is in the form (a j,F j) where F j = {p j,1, . . . ,p j,V}.

To provide a finer representation of the wire given F j, we search for a parametric
curve function f : R→ R3 that would represent the wire with higher resolution. In practice,
parametric curve

f(t) = ( fx(t), fy(t), fz(t))T (5.1)

could be represented by polynomial functions of degree h such that

fx(t) =
h

∑
k=0

sx,ktk, fy(t) =
h

∑
k=0

sy,ktk, fz(t) =
h

∑
k=0

sz,ktk

where s j,k are coefficients to be optimized. Curve function f(t) that best fits points F j can
be obtained by the least-squares method and is the solution of

min
υ

V

∑
k=1
‖p j,k− f(t)‖2 (5.2)

where υ is the vector of all polynomial coefficients in f(t). Problem (5.2) can be solved
rapidly with parametric curve fitting [16]. In brief, an iterative algorithm associates value
ti to pi by locally minimizing ‖pi− f(ti)‖2 and ensuring that ti < ti+1. With the acquired
parametric curve fit, we generate m equally spaced points P j = {p1, . . . ,pm} along the
wire (m� V ). These m points are considered an higher resolution representation of the
sampled wire and further used for learning map Γ. In order to acquire this parametric
fit, the initial points must be in order, which is not necessarily true. Using the K-Nearest
Neighbors algorithm with K = 1, we iteratively search for the next marker along the wire
that satisfies the distance constraints starting at the base gripper marker. Afterward, we
use the arranged markers as inputs for the parametric fit. Finally, the generated training
data consists of N samples in the form D = {(ai,Pi)}M

i=1. For each ai sample, we also
record the corresponding pose of the second gripper bi. Hence, we have another dataset
V = {(ai,bi)}M

i=1 for motion planning as will be discussed later.
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5.1.2 Learning Model: Supervised and Convolutional Autoencoder

A Fully-Connected NN (FC-NN) model can be directly trained with D to acquire an ap-
proximation of Γ. In such case, the input would be six-dimensional while the output is
the flattening of P to a vector of dimension 3m. However, such vector representation
loses the spatial relationship between coordinates along the wire and may affect accuracy.
Alternatively, we propose to incorporate convolutional layers to allow the model spatial
understanding of the data and parameter sharing. On top of that, we train a Supervised
Autoencoder (SAE) model [32] to augment the learning and acquire an inverse solution
Γ−1 along the way. Hence, we further describe the architecture of the proposed Supervised
and Convolutional Autoencoder (SnCAE) to learn wire shape representation.

A standard Autoencoder (AE) is a neural-network aimed to find a lower-dimensional
embedding of some data, i.e., dimensionality reduction. AE is trained to reconstruct the
input at the output through an encoder and a decoder. The encoder is used to identify
embedded information in the data and compress it to a latent representation z ∈ Rd where
dimension d is lower than the one of the input data. The decoder, on the other hand,
reconstructs the original data from the latent representation. AE is normally trained to
reconstruct input data X by minimizing the objective function ‖X −X ′‖2 where X ′ is the
output of the decoder. AE is capable of learning complex non-linear relations where sim-
pler models of dimensionality reduction under-perform.

As mentioned, we preserve the spatial representation of the wire by having the input
and reconstructed output to the encoder and decoder, respectively, as m× 3 arrays (each
row is a point along the wire). Therefore, the input to the encoder passes through a con-
volution with an mc×1 kernel yielding a convolutional layer of size m×3×ma. The data
then passes through a set of fully-connected layers as seen in Figure 5.1. The latent space
is six-dimensional to match the size of the F/T state. The encoder and decoder are mir-
rored while the output of the decoder goes through a de-convolutional layer of size mc×1.
ma, mb and mc are hyper-parameters to be further optimized. Therefore, the reconstruction
loss is given by

Jr = ‖P −P ′‖2. (5.3)

While the AE is an unsupervised method, SAE is a variation of AE where the model
also supervises the representation of the latent space. Based on prior work discussed
above, the latent representation of a wire shape is six-dimensional. Hence, we set the
latent layer in the AE to be d = 6, i.e. z ∈ R6. Furthermore, we add a soft constraint on the
latent space to minimize the distance to a ∈ AFT . Hence, we formulate a latent loss value
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Figure 5.1: Convolutional layers constructing the encoder and decoder
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Figure 5.2: Framework of the Supervised and Convolutional Autoencoder
(SnCAE).

in the form of
Ja = ‖z−a‖2. (5.4)

Additionally and for regularization, for each batch of data, we compare the reconstruction
ofP with either using z or a in the decoder. Consequently, we train the SnCAE to minimize
a combined loss function

J = Jr1 +Jr2 +wJa (5.5)

where Jr1 and Jr2 are the reconstruction loss when applying z and a to the decoder, re-
spectively. Scalar w > 0 is a tunable weight. An illustration of the SnCAE is given in
Figure 5.2. Preliminary analysis has shown that adding Jr2 to the loss improves accuracy
by approximately 25%. A trained SnCAE with minimal loss J can reconstruct wire shape
data while giving a physical and practical meaning to the latent space.

A trained SnCAE has two usages. First, the decoder is the approximated mapping Γ

which maps a measured ai to the spatial shape of the wire Pi. In other words, we can use
the decoder as a shape estimator based on F/T sensing at the base gripper. Furthermore,
the encoder provides a fast inverse solution instead of problem (4.8), i.e., ai = Γ−1(Pi).
Therefore, the encoder can be exploited to estimate the F/T load at the base gripper, i.e.,
wire state in AFT , based on a measured shape of the wire. We note that an NN architec-
ture similar to the decoder, termed Decoder CNN (D-CNN) can be trained independently.
However, the SnCAE provides both shape estimation and inverse model within the same
training. The D-CNN will also be analyzed in the experiments.
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5.1.3 Motion planning over F/T states

Given ai ∈ A and its corresponding second gripper pose bi ∈ B. We define an homoge-
neous transformation matrix M ∈ SE(3) with δx ∈ R3 and exponential coordinates y ∈ R3

and δθ ∈ [0,π) such that

M(δb) =

[
eyδθ δx

0 1

]
for δb =

(
yδθ

δx

)
. (5.6)

Matrix M is defined to map between two configurations in B such that

bi+1 = biM(δb) (5.7)

where perturbation to bi+1 will result in wire configuration ai+1. From Theorem 7 and
equation (37) in [13], we get that

δb≈ J(L)δa (5.8)

where δa = ai+1− ai. Matrix J(L) is the Jacobian relying on the solution of the above
ordinary differential equations and is detailed in [44, 36]. Equation (5.8) states that matrix
J(L) contains information about the relationship between small changes in A and small
changes in B. Therefore and given a desired ai+1 in the vicinity of ai, the required pertur-
bation δa in A can be obtained. Then, by solving (5.8), one can use map (5.7) to compute
the required perturbation in B in order to move a wire from configuration ai to ai+1.

A data-based approach and a learned map Γ do not enable the extraction of an explicit
representation of the Jacobian. Furthermore, the non-linearity of the F/T sensor does not
guarantee that perturbation δa can be mapped to the same δb for any ai ∈ AFT . Alter-
natively, we propose to directly learn mapping from ai to bi, i.e., Λ : AFT → B. Once
having map Λ, we can extract the required gripper perturbation δbi from bi = Λ(ai) to
bi+1 = Λ(ai+1) according to (5.6)-(5.7). With dataset V , an FC-NN is trained to learn map
bi = Λ(ai).

Matrix bi ∈ SE(3) contains a rotation matrix Rbi
and the position vector. While the

latter is easy to encode, direct encoding of rotation matrices for NN training cannot be
done while maintaining orthonormality. Hence, we encode bi with a nine-dimensional
vector by flattening the position vector along with two columns (v1,v2) of the matrix.
Reconstruction of the rotation matrix Rbi

given output (v1,v2) from the NN is done using
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the GramâSchmidt process [54] according to

w1 =
v1

‖v1‖
u2 = v2− (w ·v2)w1

w2 =
u2

‖u2‖
Rbi

= [w1 w2 w1×w2] .

Model Λ could be used to plan motion to a desired goal as follows. Given a wire shape
goal Pg, the F/T state goal is the solution of the inverse problem ag = Γ−1(Pg) computed
with the encoder of the SnCAE. A motion planner would output a continuous path γ :
[0,1]→AFT from the current start γ(0) = as ∈ AFT to a desired one γ(1) = ag ∈ AFT .
Furthermore, decoder mapping Γ is used as a collision checker where shapes of candidate
F/T states are validated to be collision free. We check wire collision with obstacles or
with the robot and wire self-collision. A sampling-based motion planner can then be used
for finding a collision-free path [31]. In this work, we employ the asymptotically optimal
variant of the Rapidly-exploring Random Tree, i.e., RRT∗ [23]. The RRT∗ planner finds a
path from as to ag while minimizing path length in AFT . Once path γ is acquired, a step
from ai to ai+1 along the path is translated to perturbation command δbi of the second
gripper from bi = Λ(ai).

5.2 Experiments

5.2.1 Shape estimation analysis

We evaluate shape estimation on two wires seen in Figure 5.3: a Nitinol wire of 2 mm di-
ameter and 820 mm length, and a standard electrical wire of 3 mm diameter and 500 mm
length. The electrical wire does not meet the ground assumptions of [13] and was shown
in [36] to yield large approximation errors when using the analytical model. Data was
collected as discussed in Section 5.1.1 while sampling M = 26,187 and M = 15,400 Niti-
nol and electric wire shapes, respectively, and their corresponding F/T measurements. For
each sample, a h = 6 degree polynomial function was fitted and m = 100 equally spaced
points were generated along it. Training set D is, therefore, comprised of F/T measure-
ments and their corresponding polynomial approximation of the shape. In addition, test
sets were collected independent of the training set and included approximately 1,200 sam-
ples. Shape estimation error is defined as the Root-Mean-Square-error (RMSE) between
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Figure 5.3: Electrical (top) and Nitinol (bottom) wires used in the experiments.

Table 5.1: Results for wire shape estimation using various models

Model Mean error (mm) Comp. time (msec)
Analytical model [36] 37.14±16.48 72.22±11.40
FC-NN 12.16±5.26 0.18±0.19
SnCAE (with Decoder) 10.70±0.25 1.83±5.26
D-CNN 11.20±0.17 1.72±5.07

measured marker positions of a test shape and the closest points of the predicted polyno-
mial shape (based on corresponding F/T measurement).

We first analyze the shape estimation of the Nitinol wire. Using dataset D, we train
the proposed SnCAE model along with FC-NN and D-CNN models for comparison. In
addition, we also provide results for the analytical model as implemented in [36]. Hence,
optimization problem (4.8) was solved for each sample inD taking approximately 48 hours
in total. With the solutions, we train NN model ψ to map F/T measurements to theoretical
wire configurations enabling the solution of p(t) = Φ(ψ(ai)). On the other hand, the other
NN models were optimized to yield the lowest shape estimation error. The optimal FC-
NN model is composed of one hidden layer of 119 nodes, Rectified Linear Unit (ReLU)
activation function and a regularizer of 8.8× 10−7. The optimal hyper-parameters of the
SnCAE model are ma = 16, mb = 480 and mc = 10.

Table 5.1 summarizes the results of all methods for the Nitinol wire including shape
estimation accuracy and mean computation time of an individual wire shape estimation.
Computation time was evaluated on an Intel-Core i7-8700 Ubuntu machine with 16GB of
RAM. First, the analytical model not only takes a long period of time to process data, it
provides inferior results in terms of accuracy. For the model to provide better accuracy
as demonstrated in [36], much more data is required for training calibration model ψ

with the cost of days more of computation. Also, the average computation time for one
shape estimation is rather large, fits to the time reported in [44] and is limited in real-time
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Figure 5.4: Shape estimation accuracy with regards to the number of collected
samples and for FC-NN and SnCAE.

motion planning. On the other hand, with the same amount of data, a NN can provide a
much lower error as the results indicate. Furthermore, SnCAE is shown to provide lower
errors in average compared to the FC-NN with a much smaller standard deviation. D-CNN
also provides a fairly good accuracy. Computation times of shape estimation for all data-
based models are much faster by at least an order of magnitude compared to the analytical
model. Thus, they are far more suitable for real-time applications.

Figures 5.4 and 5.5 show the shape estimation error of the Nitinol and Electrical wires,
respectively, for SnCAE and FC-NN with regards to the number of samples in D. The
error for each number of samples was cross validated over 20 sequential data batches taken
randomly from the entire training set. While the improvement of SnCAE over FC-NN is
marginal for FC-NN, the improvement is much larger for the electrical wire. Overall, the
results show that SnCAE outperforms FC-NN while enabling low errors for a relatively
small amount of data. The electrical wire is softer than the Nitinol and, therefore, the
magnitude of the F/T signals are smaller and more affected by noise making it harder to
learn. Nevertheless, the mean error of SnCAE is rather small (approximately 22 mm).
In addition, one can settle for half of the data and acquire almost the same accuracy. In
a collision checker and motion planning setting, a safety distance would be taken from
the wire that is larger than such accuracy. Figures 1.2 and 5.6 show examples of shape
estimation with SnCAE in real-time for the Nitinol and electrical wires, respectively.

Table 5.2 presents the F/T errors of the inverse problem solved with the Encoder of the
SnCAE. The encoder is evaluated over the test data mapping measured wire shapes to F/T
states. For reference, maximal absolute force and torque measured with the Nitinol wire
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Figure 5.5: Shape estimation accuracy with regards to the number of collected
samples and for FC-NN and SnCAE.

Figure 5.6: Shape estimation of a standard electrical wire using only a
Force/Torque sensor on one gripper. The wire configuration on the right is ap-
proximated and visualized in simulation (red markers), and compared to mark-
ers (white markers) tracked with a motion capture system..
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Table 5.2: Accuracy of inverse solution with the SnCAE encoder

Wire Force error (N) Torque error (Nm)
Nitinol 0.34±0.28 0.038±0.032
Electric 0.52±0.11 0.051±0.016

Table 5.3: Roll-out errors along planned paths

Error Shape (mm) Force (N) Torque (Nm)
Goal reach 4.5±2.9 0.23±0.18 0.041±0.027
Path tracking 6.1±3.3 0.36±0.29 0.066±0.055

are 6.27 N and 1.06 Nm, respectively, and for the electrical wire, 3.10 N and 0.3 Nm. The
results, therefore, show good F/T estimation allowing mapping desired shapes to states for
motion planning, as discussed in the next section.

5.2.2 Path planning

We conduct an experiment in which the robot must manipulate the Nitinol wire to some
desired shape. Map Λ is implemented by training a standard fully-connected NN as dis-
cussed in Section 5.1.3. Furthermore, goal shapes Pg are randomly sampled by manually
placing the cable without the robot along desired shapes and recording using the motion
capture system. A goal state is computed with the encoder according to ag = Γ−1(Pg). An
RRT∗ is then implemented to plan in AFT while using Γ for collision checking and Λ for
moving the robot along the path.

We analyze roll-outs along ten planned paths to various goals. At each trial, we plan
motion from the current pose to a chosen goal shape. Once planned, the path is rolled-out
in open-loop by exerting the computed sequence of gripper poses. Table 5.3 summarizes
the results for roll-out accuracy both for tracking the path and reaching the desired goal.
Note that a shape tracking error refers to the RMSE of the markers relative to the planned
shapes of the corresponding steps along the path. Therefore, the results show high ac-
curacy tracking and goal reaching. A path was planned with the accuracy of the SnCAE
decoder. However, roll-outs are dependent on the accuracy of the corresponding gripper
pose b acquired by learned model Λ. Hence, the accurate model Λ enabled the good track-
ing of paths without regards to the accuracy of the decoder that planned them. Figure 5.7
shows snapshots of one roll-out while the corresponding path tracking inAFT is illustrated
in Figure 5.8. Tracking is seen to be accurate both in shapes and in AFT .
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Figure 5.7: The wire is manipulated along a planned path (yellow curves) inAFT

from (top) start to (bottom) goal. The shape of the wire is estimated in real-
time (red curve) using the decoder of the SnCAE and motion of the gripper is
determined according to model Λ.
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Figure 5.8: Roll-out of a planned path in AFT corresponding to the motion in
Figure 5.7.

Figure 5.9 shows a demonstration of planning a path in the presence of a cylindrical
obstacle. The location of the obstacle was detected with markers and a motion capture
system. Motion to the same goal was conducted five times while starting from different
states. All roll-outs were successful and the wire did not collide.
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Figure 5.9: Roll-out of a planned path (yellow curves) across an obstacle (yellow
cylinder).
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6 Conclusion

We have addressed the problem of estimating the shape of a wire solely based on F/T mea-
surements at the base gripper. At first, a complete framework has been proposed where
the mechanical properties of the wire are rapidly approximated and the wire can be ac-
curately manipulated with closed-loop control. The shape of the wire is controlled in the
configuration space of the wire rather then in space of gripper poses. In such way, the
manipulation can be performed without explicit information on the spatial shape of the
wire. The experiments have shown that, indeed, accurate manipulations can be performed
without complex visual perception. We have also evaluated the control of the wire in A.
Open-loop control has been shown to be feasible when the robotic arms are accurate. Nev-
ertheless, closed-loop control maintains accurate manipulations even when the accuracy
of the arms is low.

To overcome issues when using the analytical model, such as computational complex-
ity and wires generalization, we proposed training a NN model based on F/T measure-
ments exerted on a robot arm by a wire. An autoencoder based model, termed SnCAE,
was presented where convolutional layers were used to maintain the spatial shape of the
wire and the latent space was forced to resemble the space of F/T measurements. Then, the
trained encoder and decoder are used for mapping wire shape to F/T state and vice versa,
respectively. Generally, the evaluated data-based models (decoder of SnCAE and FC-NN)
outperformed the analytical approach proposed in prior work for shape estimation, as well
as being much more sources efficient. While the SnCAE gained moderate accuracy im-
provement over the FC-NN for the two cables, it has provided an added value with the
encoder. The encoder was shown to be able to solve the inverse problem and identify goal
F/T states from given shapes. Furthermore, the results show that sufficient accuracy can
be achieved with a relatively small amount of samples. Along with a Nitinol wire, we have
demonstrated, for the first time, the ability to predict the shape of an electrical wire with
an accuracy that is feasible for real applications. With another NN model trained with the
same collected data, we can map F/T states to desired gripper poses. Hence, a motion
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planner was implemented to plan and roll-out collision-free paths. A set of experiments
was shown to validate pose estimation and planning accuracy.

Our proposed method indeed provides a model for the trained wire. The model can-
not be applied, for instance, to a wire of different length. Therefore, future work may
involve the generalization of a NN model to wires of various lengths, materials and stiff-
nesses. In addition, some data augmentation can be performed to reduce the number of
real samples required. Alternatively, data collected from a physics engine along with do-
main randomization may provide sufficient generalization to various wires. Future work
may also combine visual perception and F/T measurement to reduce estimation inaccu-
racies. Additionally, an algorithmic solution is required in order to detect the location of
collisions in order to retract properly.
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 תקציר 

 

 

אתגרים ושאלות  מהווה זה מכבר תחום עניין המעורר  באמצעות רובוטים  מניפולציה של כבלים  

; בסביבה  בסביבה סבוכה  בתחום הוא ביצוע מניפולציה של כבלים  הקיימים. אחד האתגרים  רבות

בעייתית,   תאורה  או  מהסתרות  הנובע  ודאות  חוסר  קיים  על  ר  שא  דברשכזו  מצלמה  מקשה 

לפחות   תמונה  של  ובסגמנטציה  ממוחשבת  בראייה  השימוש  את  הופך  ולמעשה  בכבל  להבחין 

  בזמן אמת   שערוך של צורת הכבל באופן מדויק  ך מצרי  כמו כן, ביצוע מניפולציה של כבל   יעילים.

מתקשים לתת מענה  כלים  מלבד השימוש בראייה ממוחשבת, יתר האך  נון ובקרה,  יכולת תכ   לצד

   מספק. 

 

  פשוט  דיניתנת להגדרה על ידי ייצוג  אלסטי  כבל  התפתחה תיאוריה לפיה צורת    בשנים האחרונות

ומומנטים    – הכבל.  רק  כוחות  של  אחד  התיאוריה  בקצה  את  לבחון  אמפיריכדי    יצרנו ,  באופן 

אלסטייםש  תמערכ   תחילה  כבלים  של  מניפולציות  לבצע  דוב  מטרתה  רובוט  זרועי.  -אמצעות 

ומומנטים   כוחות  של  חישה  על  מבוססת  זו  הרובוט,  מערכת  של  אחת  שאינה  בזרוע  דורשת  כך 

,  כך שמלבד היכולת שלה  ,לאחר מכן הרחבנו את יכולות המערכת  .כלים מבוססי תמונהשימוש ב

, באמצעות  היא יכולה כעת,  צורתולשערך בזמן אמת את    הכבל,על בסיס ידע מקדים של תכונות  

, ועל ידי  , לשערך את צורתואת תכונותיו ללא צורך בידע מקדים  דלאמו,  כוחות ומומנטים  חיישן 

 בחוג סגור.   על המסלולבצע בקרה לכך לתכנן מסלול ו 

 

עבור כל סוגי  מתקיימות  שאינן בהכרח    ות מסוימותנשען על הנח עליו מבוססת המערכת    מודל זה

כבל.  ולכן    ,הכבלים כל  של  מניפולציה  לבצע  היכולת  את  אין  אינו  יתרה מזאתלמערכת  , המודל 

  וכדי לפתור את הבעיה הזו   ,לינאריות של חיישן הכוחות והמומנטים-לוקח בחשבון גרביטציה ואי 

)  לפתורצורך  יש   ההופכית  הכבלאת הבעיה  צילום  והמומנטים מתוך  של הכוחות    (, אשר שערוך 

המתאר את צורת הכבל  למידה של מודל  ה  אתחקרנו  בעקבות אלו,    . חישוביתפתרונה יקר מאוד  

ידי מיפוי   והמומנטים  על  אשר  לאמן מודל  כך, אנו מציעים    על בסיס  הנמדדים בחיישן.הכוחות 

ומאידך כפתרן    ,על ידי מיפוי ממרחב הכוחות והמומנטים בחיישןכבל  ה צורת    לתאר את  מחדיוכל  

הה  וופכית.  לבעיה  לבצע  לבסוף,  לרובוט  לאפשר  מנת  ביצענו  על  הכבלים,  על  המניפולציות  את 

 , אשר ממפה את הכוחות והמומנטים למצב הרובוט. על אותו סט אימון ,אימון של מודל נפרד
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