
Optimal Configuration of a Robotic Manipulator to Perform a
Specific Task in a Cluttered Environment

A thesis
submitted in partial fulfilment

of the requirements for the Degree
of

Master of Science

by

Inbar Meir

This research was carried out at

in the School of Mechanical Engineering

Faculty of Engineering

under the supervision of

Dr. Avishai Sintov, School of Mechanical Engineering

and

Prof. Avital Bechar, Volcani Center

Tel Aviv University

August 2022

Abstract
Robotic arms are the foundation of modern automation for manufacturing. They accommodate
production lines and perform the majority of tasks such as assembly, machining, painting, welding
and packaging. However, these highly capable robots are usually degraded to simple repetitive
tasks such as pick-and-place or welding along the same course. On the other hand, designing
an optimal robot for one specific task consumes large resources of engineering time and costs.
Moreover, common methods search for collision free paths for robotic arms. However, these are
unlikely to be found in cluttered environments where objects must be cleared in order to reach
the goal. Furthermore, robotic manipulators are usually interact with the environment solely using
their end-effector.

This work seeks for the near-optimal robot configuration to perform a specified task based on
human demonstration. The proposed method searches for the robot design variables and the robot
placement in the world. An optimal robot is the one that incorporates the minimal DOF and pro-
vides best accuracy during task execution. In addition, the optimal design is given with a required
path to complete the task. The path is composed using a meta-heuristic method in order to find
the joint values to perform the task. This approach takes into consideration the entire robot arm
(joint and links), to perform tasks in cluttered environments or to avoid obstacles. The proposed
method can also be used to plan a robot path along a human demonstration for existing robots. We
provide a comparative analysis to identify the most suitable algorithm to solve this optimization
problem. Different known methods, such as Artificial Bee Colony, Genetic Algorithm and Sim-
ulated Annealing, are tested and compared. Furthermore and to overcome the highly non-linear
and non-continuous search space of the problem, a new algorithm is proposed termed Robot Arm -

Particle Swarm Optimization (RA-PSO). Moreover, we define a new evaluation index Normalized

Computation Effort Index (NCEI) that combine the convergence iteration and valid particles. The
new method can find the same robot design of the standard method with lower NCEI.

To test and establish our method, we use three diffident test cases. The first is a classic pick
and place of an object from a conveyor while avoiding an obstacle. The second scenario is of
a robot performing a welding task and requires to track position and orientation of the human
demonstrator. The last scenario is a robot moving inside a palm tree canopy in order to perform
the thinning task. The palm tree canopy represents a cluttered environment that a collision free
path will not be found by the classic path planing methods. In brief, the results show improvement
in the NCEI of 90% ,69%, 53% and 44% in average for all scenarios for DOF = 3, 4, 5, 6,
respectively.

Table of Contents

Acknowledgments iii

List of Figures 1

List of Tables 5

List of Symbols 7

1: Introduction 9

1.1 Objectives . 11

2: Related Work 12

2.1 Optimal design of robotic arms . 12

2.1.1 Optimal design for increasing dexterity methods 12

2.1.2 Optimal design for a specific task . 13

2.1.3 Optimization of robotic arms for agricultural applications 14

2.2 Evaluation criteria for an optimal arm . 14

2.3 Usage of meta-heuristic algorithms to optimize robot design 15

2.4 Path planning based on human demonstration 15

3: Methodology 16

3.1 Optimization objective . 16

3.2 Mathematical Definitions . 16

3.2.1 Tracking Path . 16

3.2.2 Robot design variables . 17

3.2.3 Allocate robot tracking point . 18

3.3 Problem Definition . 19

3.3.1 Robot temporal fitness . 19

3.3.2 Robot path fitness . 19

3.3.2.1 Alternative approach for robot fitness 20

3.3.3 Boundaries and Constraints . 21

3.4 Optimization algorithm . 22

4: Palm tree leaf model 24

4.1 The experimental apparatus . 25

4.2 Experiment 1- Spring correlation . 27

4.2.1 Spring correlation results . 28

4.3 Right/Left trees . 33

4.4 Experiment 2 - Adjusting the equations for all leaf lengths 34

4.5 Experiment conclusion - Fit Leaf Equations for all leaf lengths 36

5: Results & Discussion 38

5.1 Experiments . 38

5.1.1 Setup . 38

5.1.2 Test cases . 39

5.2 Temporal fitness . 42

5.2.1 Robot path fitness - f∗(ϕ) . 44

5.3 Robot fitness tests with different algorithms . 45

5.4 RA-PSO . 47

5.4.1 Find D limits . 47

5.4.2 Compare all scenarios optimization results 48

5.4.3 Convergence iteration and valid particles 50

5.4.4 Normalized Computation Effort Index (NCEI) 53

5.5 Near-optimal robot configuration for all scenarios 56

5.6 Robot arm demonstration . 58

6: Conclusions 62

References 64

ii

Acknowledgments

I would like to thank my advisors Prof. Avital Bechar and Dr. Avishai Sintov for their guidance,
advice, listening, patience, creativity, support and for granting me the opportunity to learn and
perform this research with them. Second, I would like to thank the Ministry of Innovation, Science
and Technology for granting me the Golda Meir scholarship and allowed me to focus on this
research.

I want to thank the farmer Gazy Moshe who allowed us to perform experiments in his planta-
tion and equipped us with the necessary equipment. Dr. Yuval Chohen for sharing his knowledge
and teaching me a lot about palm tree growth and biology, and to Iftach Afgin for helping me work
and build all the tools necessary for this work. Moreover, I want to thank all the amazing people
I met, worked and consulted in the Institute of Agricultural Engineering. I was amazed by your
work and learned allot on this important research field.

I want to thank my laboratory friends, from both Tel Aviv and Volceni center, for all your
advice and insights along the way. In addition, I would like to acknowledge my family for sup-
porting, encouraging and believing in me along this journey. Finally, I want to thank my husband
Dekel Meir, for listening to me speaking and thinking out loud on this research all this time, and
for helping me build all the assistant tools for this research. I couldn’t have done this without you.

iii

List of Figures

1.1 Illustration of a robot kinematics evaluated on a recorded task. In this example, the robot

end-effector must follow a recorded path of the human hand (circular red markers) while

its arm should follow the human arm markers (circular blue and green markers) to avoid

obstacles. The proposed optimization method searches for the robotic arm kinematics with

the minimum degrees-of-freedom that can best track the recorded task. The dashed curves

are the paths of the robotic arm that best track the recorded human ones. 10

3.1 (a) Illustration of a robot parameterized by Φ where any point along it can be represented

by sΦ(σ,q). Points σ = 0 and σ = 1 are the base and end-effector points, respectively.

(b) Area to minimize (yellow) for a better fit between the robot arm (solid lines) and lines

(dashed) formed by the recorded markers (red) where, in practice, we minimize the mean

lengths of the grey lines. 18

4.1 Plantation workers try to reach a date cluster and perform the date thinning task. . 24

4.2 Beam with a torsional spring. 25

4.3 Main movement directions of a leaf. 25

4.4 The experimental system used to measure the force on a palm tree leaf. 26

4.5 Demonstration of the system for measuring reaction forces during the pull of the
leaf in all directions. 27

4.6 Leaf measurement points for experiment 1. 28

4.7 Force with respect to ∆x of leaf movement in the left direction in 6 different leaves. Dis-

tance from the tree trunk is (a) 50, (b) 100 (c) 150 and (d) 200 (cm). 28

4.8 Force with respect to ∆x of leaf movement in the right direction in 6 different leaves.

Distance from the tree trunk is (a) 50, (b) 100 (c) 150 and (d) 200 (cm). 29

4.9 Force with respect to ∆x of leaf movement in the up direction in 6 different leaves. Distance

from the tree trunk is (a) 50, (b) 100 (c) 150 and (d) 200 (cm). 29

1

4.10 Force with respect to ∆x of leaf movement in the down direction in 6 different leaves.

Distance from the tree trunk is (a) 50, (b) 100 (c) 150 and (d) 200 (cm). 30

4.11 Calculated spring constant K with respect to the normalized distance from the trunk for

directions (a) up, (b) down, (c) right and (d) left. 31

4.12 Calculated spring constant K by normalized distance from the trunk, leaf mass and leaf

diameter for all tested directions down (a,b,c) up (d,e,f) right (g,h,i) and left (j, k ,l). The

black dots are the raw results and the blue curves represent the exponential regression results. 32

4.13 Example of tree rotation to the right. 33

4.15 Measuring auxiliary device on the stage. 34

4.14 K (N/m) with regards to the normalised distance from the tree trunk (%) for left (a) and

right (b) directional trees. Blue and green lines present the results for right and left trees,

respectively. 34

4.16 K (N/m) with regards to (a) the normalised distance from the tree trunk (%) calculated

according to (4.2) and, (b) the measured distance from the trunk in meters, for the UP

direction. Blue curve presents the results for old trees with long leaves and the green curve

presents the results for younger trees with medium leaf length. 35

4.17 K (N/m) with regards to (a) the normalised distance from the tree trunk (%) calculated

according to (4.2) and, (b) the measured distance from the trunk in meters, for the Down

direction. Blue curve presents the results for old trees with long leaves and the green curve

presents the results for younger trees with medium leaf length. 35

4.18 K (N/m) with regards to (a) the normalised distance from the tree trunk (%) calculated

according to (4.2) and, (b) the measured distance from the trunk in meters, for the Right

direction. Blue curve presents the results for old trees with long leaves and the green curve

presents the results for younger trees with medium leaf length. 36

4.19 K (N/m) with regards to (a) the normalised distance from the tree trunk (%) calculated

according to (4.2) and, (b) the measured distance from the trunk in meters, for the Left

direction. Blue curve presents the results for old trees with long leaves and the green curve

presents the results for younger trees with medium leaf length. 36

4.20 Final equations for K in (a) up, (b) down, (c) right and (d) left directions. The black curves

represent the correlation and the black dots are from the raw data. 37

5.1 (a) PrimeX -41 camera used to record P and the (b) Motive software used to analyze motion

data. 38

5.2 Recording of a human arm path in an industrial packaging scenario I. A robotic arm is to be

optimized to accurately track the recorded path. The end-effector of the robot must follow

the path of the hand markers while its arm should follow the human arm markers to avoid

obstacles. 39

2

5.3 Recording of a human arm path in an industrial welding scenario (II). A robotic arm is to be

optimized to accurately track the recorded path. The end-effector of the robot must follow

the path and orientation of the hand markers. 40

5.4 Mock-up to simulate a palm tree canopy for recording a date thinning path within the labo-

ratory. 40

5.5 (a) Mock-up to simulate a palm tree canopy. (b) Palm tree leaf growth orientation 41

5.6 (Left) Recording of a human arm path with the palm tree mock-up built in the laboratory

(III). A robotic arm is to be optimized to accurately track the recorded path. The end-

effector of the robot must follow the path and orientation of the hand markers in order to

interact with the canopy leaves. (Right) Full tree mock-up built in the laboratory 42

5.7 Temporal fitness score from (3.5) with respect to the time of convergence (sec) for all (a)

n = 3, (b) n = 4, (c) n = 5 and (d) n = 6. 43

5.8 (a) Coefficient of variation for the time parameter. (b) Coefficient of variation for the score

parameter. 44

5.9 Mean results of 10 repetitions for f(ϕ) and f∗(ϕ) with a full path and with regards to

n = 4...6. 45

5.10 Mean time of 10 repetitions for f(ϕ) and f∗(ϕ) with a full path and with regards to n = 4...6. 45

5.11 (a) Mean and (b) standard- deviation results for Φ∗ with n = 3, 4, 5, 6 and D = 1, 2, . . . , 11

over 30 repetitions. 48

5.12 Mean results for (a) E(Φ) and (b) f(Φ) for n = 3, 4, 5, 6 and D = 1, 2, . . . , 11 over 30

repetitions. 48

5.13 Robot Fitness (3.7) with D = 2, 3, 4, 5 and n = 3, 4, 5, 6 for scenarios (a) I, (b) II and (c)

III. 49

5.14 Results for f(Φ) and E(Φ) with D = 2, 3, 4, 5, n = 3, 4, 5, 6. Results for f(Φ) in

scenarios (a) I, (b) II and (c) III. Results for E(Φ) in scenarios (d) I, (e) II and (f) III. . . 50

5.15 Mean number of iterations to convergence for all scenarios . 1 ≤ D < 6 , n = 3, 4, 5, 6 . 51

5.16 Mean convergence iteration . 1 ≤ D < 6 , n = 3, 4, 5, 6 for scenario I scenario II and

scenario III,(a),(b),(c) respectively. 51

5.17 Mean valid agent of iteration for all scenarios . 1 ≤ D < 6 , n = 3, 4, 5, 6 52

5.18 Mean valid agent of iteration . 1 ≤ D < 6 , n = 3, 4, 5, 6 for scenario I scenario II and

scenario III,(a),(b),(c) respectively. 52

5.19 Normalized Computation Effort Index for all scenarios . 1 ≤ D < 6 , n = 3, 4, 5, 6 . . . 54

5.20 Normalized Computation Effort Index . 1 ≤ D < 6 , n = 3, 4, 5, 6 for scenario I scenario

II and scenario III,(a),(b),(c) respectively. 54

3

5.21 Correlation for Iteration by Valid Agent . 1 < D < 6 , n = 3, 4, 5, 6 for scenario I scenario

II and scenario III,(a),(b),(c) respectively. 55

5.22 Improvement in Θ with regards to improvement in Φ∗ for 1 < D < 6, for n = 3, 4, 5, 6 in

(a), (b), (c) and (d), respectively. 56

5.23 Fitness (a) Φ∗, (b) f(Φ) and (c) E(Φ) by n = 3, 4, 5, 6 for scenario I and D = 2. 57

5.24 Proposed robot configuration with n = 3 for scenario I. 57

5.25 Fitness (a) Φ∗, (b) f(Φ) and (c) E(Φ) by n = 3, 4, 5, 6 for scenario II and D = 2. 57

5.26 Proposed robot configuration with n = 3 for scenario II. 58

5.27 Fitness (a) Φ∗, (b) f(Φ) and (c) E(Φ) by n = 3, 4, 5, 6 for scenario III and D = 2. . . . 58

5.28 Proposed robot configuration with n = 3 for scenario III. 58

5.29 Path P scaled up by 1.6 for scenarios (a) I, (b) II and (c) III. 59

5.30 Kinova gen3 perform the optimal paths for scenarios (a) I, (b) II and (c) III. 60

5.31 Kinova gen3 roll-outs of the optimal path for scenario III with a tree mock-up on different

approach points. 61

4

List of Tables

4.1 RMSE for nonlinear regression for K behavior along the leaf length in all directions 33

4.2 Statistical results for K behavior with exponential correlation for all tested leaf
movement directions and lengths . 35

5.1 Optimization parameters . 41

5.2 Optimization algorithms parameter set-up for solving robot temporal fitness (3.5) 42

5.3 Optimization performance for solving robot temporal fitness (3.5) using various
meta-heuristic algorithms . 44

5.4 Mean of the standard deviation of optimization performance for solving robot tem-
poral fitness (3.5) using various meta-heuristic algorithms 44

5.5 Optimization algorithms parameter set-up for solving robot fitness Φ∗ 46

5.6 Mean results for optimization algorithms solving robot fitness Φ∗ 47

5.7 Percentage (%) of improvement for D = 2, 3, 4, 5 for all n and all scenarios.
Negative score implies improvement from the classic PSO. 50

5.8 Improvement in percentage (%) from classic PSO and converge iteration result for
D = 2, 3, 4, 5 for all n all scenarios, Negative results implied on improvement
from the classic PSO. 52

5.9 Improvement from PSO in percentage (%) and valid agent found in Ωf result for
D = 2, 3, 4, 5 for all n all scenarios. Blue marks improvement compared to the
classic PSO. 53

5.10 Mean number of iterations multiplied by the mean number of valid agent, i.e., Θ.
Percentage (%) and result for 1 < D < 6 for all n all scenarios compared to
classic PSO . 55

5.11 Correlation coefficient and result p-value for Iteration Valid Agent Correlation for
all n all scenarios . 55

5

5.12 Description of the optimal robotic arms . 59

5.13 Kinova performance scores for all scenarios. 60

6

List of Symbols
symbol meaning

n Number of DOF for a manipulator.
m Number of tracked markers on the arm.
Pi A path of the ith marker relative to the shoulder.
P Set of Pm

pi,t The spatial coordinates of the ith marker at time t.
ut The Euler angles of the hand or tool at time t.
Ai Transformation matrix defining the position and orientation of joint i relative to frame

i− 1.
qi Joint angle values.
q Vector of joint values.
Φ Feature vector defining the design of a robot.
σ One-dimensional representation of the arm at configuration q.
σi Associates pi,t to the closest point on the robot.
bΦ(q) Outputs the Euler angles of the EE for robot Φ at configuration q.
δm User define value to create a list of points on the tested robot.
gΦ(t,q) The weighted root-mean-square error (wRMSE) between points p1,t, ..., pm,t and the

robot.
wi User-defined weight values that prioritize the position importance of the robot segments

relative to the recorded path.
GΦ,t Temporal robot fitness at time t for a robot.
f(Φ) Path fitness is the mean of the temporal finesses for all time frames.
E(Φ) The mean distance along the robot length and at all time frames.
L(Φ) Robot length.
Φ∗ Robot path fitness.
λf User definition weighting values for f(Φ).
λE User definition weighting values for E(Φ).
Ωf The allowed robot design search space.
f∗(Φ) Alternative tested approach for robot fitness.
Cf The allowed joint search space.
qmin Minimum actuators angle limits.
qmax Maximum actuators angle limits.
amin Pre-defined user variables to limit the static values for the DH parameter for link length

at x axis.
amax Pre-defined user variables to limit the static values for the DH parameter for link length

at x axis.

(Continued in the next page)

7

symbol meaning

dmin Pre-defined user variables to limit the static values for the DH parameter for link length
at z axis.

dmax Pre-defined user variables to limit the static values for the DH parameter for link length
at z axis.

Lmin User-defined values for minimum allowed robot length.
Lmax User-defined values for maximum allowed robot length.
N Number of particles.
M Iteration Number.
cmin User definition for adapter regain in RA-PSO.
cmax User definition for adapter regain in RA-PSO.
D Update frequency of the angular variables.

8

1 Introduction

While robotic arms are highly capable with multiple degrees-of-freedom (DOF), a robot in manu-
facturing line is usually degraded to solely perform one simple repetitive task [1–4]. These robotic
arms are commonly standard off-the-shelve hardware which are redundant for the task at hand and,
therefore, highly expensive having direct impact on the final product cost. Hence, many highly
capable and expensive robots are purchased and integrated just to perform simple tasks. While
simpler and less expensive robots can usually perform the same tasks, they are rarely available as
an off-the-shelve product [5]. On the other hand, designing designated robots for each specific task
requires complex and careful work by professional engineers. The process consumes a consider-
able amount of engineering time and may add extra cost to the final product. Hence, an optimally
designed kinematic structure is expected to improve performance and reduce costs.

While integrating a new robot, a path to be repeated over and over is usually pre-recorded by
a technician while considering robot coordinates [6] or in simulation. The recording is acquired
through the teach pendant which provides non-intuitive and non-natural control abilities. Conse-
quently, the resulted path may be non-optimal to the task nor to the environment. Another way
to teach a robot a trajectory is to use a path planner. However, common methods search for colli-
sion free paths for robotic arms [7–10]. These are unlikely to be found in cluttered environments
where objects must be cleared in order to reach the goal. Hence, a future solution should enable
the robot to push obstacles, when a collision-free path is not available. Robotic manipulators are
usually designed for interaction with the environment solely using their end-effector [11]. Push-
ing or interacting with obstacles using their body links can be much more efficient in cluttered
environments.

For example and as a test case, date thinning of palm trees with a robotic arm while moving in
a cluttered environment is investigated. The thinning is required in order to improve fruit quality
(size and taste). Currently, the thinning action is the most labor intensive task in the crop. Date
trees are very tall (up to heights of 18 meters) and require a crane to reach a date cluster. Such an
operation requires immense resources and efforts by the farmer. Moreover, tree tops are extremely
cluttered with branches that must be pushed away in order to reach the date clusters. We developed
a dynamic model for the Date Majhul tree leaf in order to learn interaction forces with leaves.

In this work, we propose a novel concept of task-oriented robot design based on expert demon-

9

Figure 1.1: Illustration of a robot kinematics evaluated on a recorded task. In this ex-
ample, the robot end-effector must follow a recorded path of the human hand (circular
red markers) while its arm should follow the human arm markers (circular blue and
green markers) to avoid obstacles. The proposed optimization method searches for the
robotic arm kinematics with the minimum degrees-of-freedom that can best track the
recorded task. The dashed curves are the paths of the robotic arm that best track the
recorded human ones.

stration able to execute path in cluster environments. We observe a human expert performing a
task and assume near-optimal execution. The whole arm motion of the expert is recorded by track-
ing paths of markers from shoulder to hand (or grasped tool). Then, we formulate an optimization
problem in which we search for the minimal DOF robotic arm design that can accurately track the
recorded task. In order to be able to avoid or push the obstacles as the expert did, tracking includes
the End-Effector (EE) of the robot as well as its entire kinematic chain as seen in Figure 1.1. The
optimization framework searches for the Denavit-Hartenberg (DH) parameters [12] that define a
robot kinematics.

We compose an optimization problem to optimize the robot joint and link design variables and
the placement of the robot in space in order to perform the task. We compare between common
meta-heuristic approaches to find the suitable algorithm for the optimization problem. Finally we
propose the Robot Arm - Particle Swarm Optimization (RA-PSO) algorithm to efficiently solve
the design problem. RA-PSO is a modified version of the known Particle Swarm Optimization

(PSO) method [13] and is particularly aimed to optimize robotic arms based on recorded paths.
RA-PSO has modified rules for efficient exploration of the valid search space. The search space in
this problem is highly non-linear and non-continuous. Since we optimize all joint and link design
variables and robot placement, direct exploration over the entire search space may have trouble
converging to the best robot configuration in limited hardware and time constraints. Moreover,
we define a new index termed Normalized Computation Effort Index (NCEI) that combines the
computational effort with the results of the optimization problem. Our approach distributes the
search over different design variables to enable a more efficient computation and low NCEI.

10

The method does not only provide an optimal robot design but also defines the joint path to
complete the task. Hence, no additional motion planning is required. Consequently, the proposed
process provides the optimal design, robot placement and motion of a robot while reducing the
need for engineering work. Using this approach, a novice user can simply record a path and acquire
both a robot design and a suitable motion even in static cluttered environments. When the system
and task environment are much larger than human capabilities, a scaled mock-up can be used with
the proposed approach to compute an optimal robot and later be scaled-up. This approach could
also motivate the use of standard and modular robotic hardware, as proposed in [14], such that the
novice user can easily assemble and operate custom arms based on the output of the optimization.
The approach can also teach a standard off-the-shelf manipulator how to move along a recorded
demonstration path.

1.1 Objectives

This overall objective of this work is to find a near-optimal robot configuration to perform a
recorded path demonstrated by a human expert. Moreover, we aim to solve a multi-point Inverse
Kinematics for a robot configuration such that all robot links can interact with the environment.

A specific aim of this work is to find the optimal design of a robotic arm for date thinning
in palm tress. The palm tree can be considered as a cluttered environment such that the arm is
required to push the leaves in order to reach the dates.

In addition, we search for the best algorithm to solve the robot configuration optimization prob-
lem. Such algorithm is required to find the optimal robot configuration that can track the recorded
path. Due to the large computation effort needed in order to solve the optimization problem in
continues space, we seek to lower the computation effort while maintaining the performance of
known algorithms.

11

2 Related Work

2.1 Optimal design of robotic arms

2.1.1 Optimal design for increasing dexterity methods

Many research studies have addressed the kinematic optimization of robotic arms while focus-
ing mostly on increasing dexterity and workspace volume. In early work, Vijaykumar et al. [15]
focused on general purpose manipulators and maximised their dexterous workspace by simply
defining their kinematic geometry. They have shown that for an optimal geometry, singular po-
sitions can be completely excluded with small reductions of the joint motion ranges. Patel and
Sobh [16] used Grashof’s criterion to define the mobility of a four-link closed kinematic chain
mechanism in relation to its link lengths. The work used the Grashof’s criterion for determining
the optimal link lengths of a three-link manipulator, in order to achieve full dexterity at desired
regions of the workspace. The work showed dexterity index plots of the workspace generated by
applying Grashof’s criterion in task placement and trajectory planning.

Recent work [17] used the DH [12] representation to define the design variables of an eight
degrees-of-freedom (DOF) upper-limb rehabilitation exoskeleton. A constrained multi-objective
optimization problem was formulated utilizing the Genetic Algorithm (GA) to search for the de-
sign variables that provide minimum size and maximum dexterity. The kinematic design opti-
mization of an anthropomorphic robot using GA was proposed to maximize the multi-fingered
precision grasping capability of the robot hand [18]. Ceccarelli and Lanni [19] presented a multi-
objective optimization problem by using the workspace volume and robot dimensions as objective
functions. Given workspace limits as constraints for a 3 DOF manipulator with revolute joints,
they solved an optimization problem using SQP. Gosselin and Guillot [20] synthesized manipula-
tors such that their workspace is as close as possible to being equal to a prescribed working area.
The workspace boundary was described as a list of circular arcs or segments using [21].

Other researchers optimized the robot design variables focusing on the dynamic performance
of the manipulator. Ma and Angeles [22] optimized the design of a manipulator under a dynamic
isotropy condition. They chose the kinematic and inertial parameters of the manipulator to be the
design variable. The dynamic conditioning index is based on the dynamic isotropy concept [23].
However and for some manipulators, an isotropic generalized inertia matrix may be unfeasible.

12

Jun and Zheng [24] presented a new method for optimal design that takes the dynamic char-
acteristics of parallel manipulators into account. The method was tested on a planar parallel ma-
nipulator built with four arms, each with three DOF. In this method, the kinematic and dynamic
performance indices are investigated and the corresponding atlases are represented graphically in
the established design space. Based on these atlases, non-dimensional geometrical parameters are
determined. Then, the optimal dimensional parameters are achieved based on the optimal non-
dimensional result of the atlases. Abdel-Malek and Yu [25] suggested a numerical method for the
placement of robot manipulators based on maximizing the dexterity at specified target points.

2.1.2 Optimal design for a specific task

While the above methods address enhancing capabilities for general tasks, others have addressed
a task-specific optimization problem. Park et al. [26] presented a task-oriented design method for
robot kinematics based on the Grid Method. Such method is widely used in the finite difference
method or numerical analysis of heat transfer and fluid flow. However, this work uses only per-
pendicular joints for the robot configuration, which significantly decreases the search space. Yang
and Chen [27] searched for modular reconfigurable robot systems with minimal DOF for a specific
task while using an evolutionary algorithm (EA). Similar to Park et al. [26], they limited the search
space of the problem for only perpendicular joints architecture.

Lum et al. [28] suggested a new method for kinematic optimization of a spherical mechanism
for a minimally invasive surgical robot. The optimization of the mechanism specifically for surgery
yields a more compact device than a general spherical manipulator. The optimization balanced be-
tween a guaranteed minimum and integrated isotropy over the dexterous workspace as well as total
link length in order to yield a very compact, highly dexterous mechanism. Alan et al. [29] intro-
duced a method to optimize the kinematic design of the continuum reconfigurable incision-less
surgical parallel (CRISP) robot [30]. A needle-diameter medical robot was proposed based on a
parallel structure that is capable of performing minimally invasive procedures. The work maxi-
mized the ability of the robot’s tip camera to view tissues in constrained spaces. They combine an
Adaptive Simulated Annealing (ASA) algorithm, with a motion planner designed specifically for
the CRISP robot. ASA facilitates exploration of the robot’s design space while the motion planner
enables evaluation of candidate designs based on their ability to successfully view target regions
on a tissue surface.

Burgner et al. [31] leveraged a grid-based search of the concentric tube continuum robots’s
configuration space with a nonlinear optimization method to maximize the reachable workspace
while satisfying anatomical constraints. Feng et al. [32] optimized laparoscopic port placement for
robot-assisted minimally invasive surgery (RMIS) by evaluating the robot’s reachable workspace
within the patient. Patel and Sobh [33] presented a kinematic optimization framework to find the
DH parameters of a robot such that it can reach any task point in a defined task subset. The design
objective in this work included the time needed to perform a collision-free motion from an initial
position to the target position as well as a dexterity measure to allow for motion corrections in

13

the neighborhood of the fruits. They used known motion planing algorithms to find the fastest
approach.

Others have attempted to find an optimal trajectory for specific tasks. Garg and Kumar [34]
proposed a path planning method that searches in the configuration space of a manipulator for
an optimal path. The optimal path is based on minimal joint torque and, therefore, leads to low
energy consumption. The researchers made use of both GA and SA algorithms and compared
performances. The GA algorithm was found to be more efficient. Monteiro and Madrid [35] have
used GA to plan the stages of the trajectory of a robot arm. They have proposed the use of GA
to plan a trajectory with obstacle avoidance. This is achieved in two stages: initial positioning,
which locates the end effector of a robot arm in the initial state, and incremental positioning which
moves the end effector to the next state of the trajectory. Pires and Machado [36] have used GA
to generate collision free trajectories for robotic manipulators with the objective to minimize the
path length and ripple in time evolution of robot positions and velocities. They have used direct
kinematics for this purpose and have presented results for several redundant and non-redundant
robot manipulators.

2.1.3 Optimization of robotic arms for agricultural applications

For agricultural applications, robotic manipulators are often designed for each task and they as-
pire to be simple and of low-cost. Scaefe et al. [37] developed an autonomous robot for kiwi
harvesting including fruit picking, unloading full bins of fruit, fetching empty bins and protecting
the picked fruit from rain. The robot has four custom-designed picking arms programmed to do
asynchronously two types of motions in order to pick the fruit. Van Henten et al. [38] used a direct
search for optimal design of a cucumber harvesting robot. The design objective included the time
needed to perform a collision-free motion from an initial position to the target position as well
as a dexterity measure to allow for motion corrections in the neighborhood of the fruits. Classic
path planing algorithms (such as RRT, PRM, etc) were used to find the shortest path from the start
position to the pick position assuming only the fruit as an obstacle. Bloch et al. [5] develop a
methodology for simultaneous optimization of a robot and its working environment and designed
an harvesting robot in apple orchards as a test case.

2.2 Evaluation criteria for an optimal arm

Kinematic optimization solutions, such as the ones previously mentioned, use different perfor-
mance measures to evaluate the kinematics of a robotic arm for general tasks. A common measure
is the Manipulability ellipsoid spanned by the singular vectors of the Jacobian and approximates
the distance to singular configurations [39]. Similarly, the Global Isotropy Index (GII) measures
the ratio between the minimum and maximum singular values of the Jacobian [40]. Another metric
approximates the reachable volume of the robot workspace [41]. Paden and Sastry [42] develop re-
lationship between the kinematic performance and the design manipulators with six revolute joints.

14

The main conclusion from this work reinforces the generally accepted idea that elbow manipula-
tors are good kinematic designs and are optimal with respect to the work-volume. Stock et al. [43]
defined space utilization as a new performance index for parallel manipulators. These, however,
do not consider tracking accuracy for task-specific paths. Kucuk and Bingul [44] optimized the
link lengths and volumes of serial robot manipulators by maximizing the workspace area covered
by the robot manipulator and maximized the new local index based on the robot Jacobian matrix.
The work showed that spherical robot manipulators have higher global performance indices. The
high local performance index does not always produce high global performance index. The new
local index, however, cannot be used for comparing the robot manipulators with each other as the
global performance index.

2.3 Usage of meta-heuristic algorithms to optimize robot design

Since cost functions that reflect the kinematics of the robot arm are non-linear, gradient-based tech-
niques will most likely fail to find global solutions and, therefore, are not commonly used [17].
On the other hand, nature-inspired meta-heuristic approaches (e.g., PSO, Artificial Bee Colony,
Ant Colony Optimization) are more capable in searching for the global optimum in complex prob-
lems [45]. For instance, Simulated Annealing was used in the design of a surgical robot to op-
timize anatomical visibility [29]. GA was used to optimize the design of a manipulator with the
GII measure [46]. Similarly, PSO was used to identify the optimal cable routing for a cable-driven
manipulator [47]. We observe the performance of these methods for robot design.

2.4 Path planning based on human demonstration

Human demonstrations have been used in robotics for many applications such as imitation learning
[48], augmenting reinforcement learning [49] and motion planning [50]. In addition, task-centric
optimization was introduced by Kapusta and Kemp [51] to select pose configurations of an existing
robot for efficient assistive tasks based on sampled human poses. However and to the best of
the author’s knowledge, no attempt has been made to optimize the kinematics of a robotic arm
for a whole arm tracking of a human demonstrated task. A closely related work by Perez and
McCarthy [52] proposed the synthesis of an arm by fitting EE poses on a set of points. Similarly,
Shirafuji and Ora [53] proposed kinematic synthesis such that the EE of an under-actuated robotic
arm would track some path. However, the derivative of the path must be available at any point for
generalized differential Inverse Kinematics (IK). Such derivative cannot be acquired qualitatively
from a recorded demonstration. Furthermore, optimization has been attempted to solely decide
joint displacements and, did not observe human demonstrations nor considered the minimization
of the number of DOF. In addition, having an EE track a path does not ensure that it will be able
to prevent collisions of the arm. Hence, we consider the path of the entire arm in order to avoid
obstacles in the environment and provide a complete solution.

15

3 Methodology

3.1 Optimization objective

A task in which an n degrees-of-freedom (DOF) robotic arm must move in an industrial environ-
ment with obstacles or in cluttered environment is given. The task could be moving an object from
one pose to another (e.g., packaging) or tracking a path (e.g., welding). The assumption is that
the environment is static or cluttered with elastic obstacles. An example of elastic obstacles could
be tree branches to be moved in order to reach the trunk. The human path is recorded once and,
therefore, dynamic obstacles cannot be considered. We aim to find an optimal robotic arm that
can perform the task. Without loss of generality, we consider only rotary joints. An optimal robot
is the one that incorporates the minimal DOF and provides best accuracy during task execution.
We consider position errors for the entire arm from base to end-effector so that arm distance from
obstacles can be maximized or the arm can accurately interact with obstacles.

A general optimization of a robotic arm may include kinematic and dynamic design proper-
ties. The kinematic properties, which we address in this work, correspond to geometric features
and DOF. On the other hand, dynamic properties refer to inertial parameters and depend on various
uncertain attributes such as material and fabrication processes of the links; and, internal damping
and friction of the actuators. Hence, dynamic properties, unlike kinematic ones, are not easy to
optimize. Therefore, we address the optimization problem of the kinematic properties while non-
optimal dynamic parameters are commonly compensated using slow motions and control tech-
niques (not in the scope of this work).

3.2 Mathematical Definitions

3.2.1 Tracking Path

As discussed previously, we consider a task in a static or cluttered elastic environment. Hence and
in light of the above objective, we seek for a robotic arm with minimal DOF that can accurately
track a single path. The single path, in this work, is a path recorded by a human demonstrator.
We assume that a path recorded by a human expert is at least near-optimal in the sense that it

16

is the shortest while maximizing the distance from obstacles or provide the best way to interact
with an obstacles in the environment. Hence, the better a robot is able to track the path, the
less it is sensitive to positioning errors, risk of collisions and able to push elastic obstacles in the
environment.

Given a task, the motion of the human expert arm is recorded. Let m be the number of tracked
markers on the arm, a recorded task is given by m paths

P = {P1, P2, . . . , Pm} (3.1)

where Pi = {pi,0, . . . ,pi,T } is a path of the ith marker relative to the shoulder. pi,t ∈ R3 is
the spatial coordinates of the ith marker at time t (Figure 1.1). We note that Pm is the path of
the human hand, which implies about the desired path of the end-effector. We also record a set
V = {u0, . . . ,uT } where elements in ut ∈ R3 are the Euler angles of the hand or tool at time t.
The recorded task can now be used to evaluate the ability of some robot arm to accurately track P .

3.2.2 Robot design variables

To optimize the design of an n-DOF robotic arm, we first define the variables that describe its
kinematics. The kinematics of a robot can be defined by a set of coordinates described by the
Denavit-Hartenberg (DH) method [54]. In DH, the forward kinematics of an arm is represented
by the product of a set of canonical homogeneous transformation matrices Ai ∈ SE(3) where
i ∈ {1, . . . , n}. Transformation matrix Ai defines the position and orientation of the coordinate
frame of joint i relative to frame i− 1 and is conventionally given by

Ai =

c(θi) −s(θi)c(αi) s(θi)s(αi) aic(θi)

s(θi) c(θi)c(αi) −cs(θi)s(αi) ais(θi)

0 s(αi) c(αi) di

0 0 0 1

 (3.2)

where c(·) = cos(·) and s(·) = sin(·). Coordinate frame Ob is the base frame fixed on the
first joint, All the calculation of the robot is taken relative to frame Ob. The four parameters ai,
αi, θi and di are standard geometric quantities. Matrix Ai incorporates only one DOF and, thus,
depends only on one variable qi. This variable would be the joint angle qi = θi for a revolute
one. The remaining three are constants and part of the design of the robot. Let ϕi ∈ R3 be a
parameterization vector that encodes the parameters of transformation from frame i to frame i−1.
Hence, ϕi is given by

ϕi = (αi, ai, di). (3.3)

Consequently, the product
Aee(q,Φ) =

n∏
i=1

Ai(qi, ϕi) (3.4)

is the robots forward kinematics that express the position and orientation of its end-effector (EE)
with regards to the base frame. We define q = (q1, . . . , qn) ∈ C as the vector of joint values

17

of the arm where C ⊂ Rn is the configuration space of the robot. Vector Φ ∈ Ω, where Ω ⊆
R3n, is the concatenation of all ϕi given by Φ = (ϕ1, .., ϕn) and is the encoding of the constant
parameters. Vector Φ fully-defines the design of a robot and, therefore, Ω is the search space for
the optimization problem defined later on.

3.2.3 Allocate robot tracking point

Given a robot defined by Φ, let sΦ : [0, 1] × C → R3 be a map such that sΦ(0,q) = 0 is the
position of the robot base and sΦ(1,q) is the position of its EE. Map sΦ is computed using the
forward-kinematics described in Section 3.2.2. Hence, sΦ(σ,q) with σ ∈ [0, 1] is a parametric
function providing the position of any given point σ along a one-dimensional representation of
the arm at configuration q as seen in Figure 3.1a. Function sΦ is non-smooth due to transitions
between links at the joints. We also define function bΦ(q) : [0, 1] → R3 which outputs the Euler
angles of the EE for robot Φ at configuration q.

The robot links are divided by a user define value ,δm , to create a list of points on the tested
robot (Figure 3.1b). The robot is divided to m parts, as the number of markers recorded in P . For
each robot part, the distance between the marker Pm to the robot point is measured. The marker
that has the smallest distance value from the robot is associated to the corresponding point on
robot. This process is done for all recorded markers in P .

(a) (b)

Figure 3.1: (a) Illustration of a robot parameterized by Φ where any point along it can
be represented by sΦ(σ,q). Points σ = 0 and σ = 1 are the base and end-effector
points, respectively. (b) Area to minimize (yellow) for a better fit between the robot arm
(solid lines) and lines (dashed) formed by the recorded markers (red) where, in practice,
we minimize the mean lengths of the grey lines.

18

3.3 Problem Definition

3.3.1 Robot temporal fitness

A recorded task (3.1) is composed of a sequence of time frames. For each individual frame, we
seek to evaluate the fitness of a given robot to the corresponding recorded points. A temporal

fitness at time t is defined to be the weighted root-mean-square error (wRMSE) between points
p1,t, . . . ,pm,t and the robot. Therefore, the wRMSE at time t for robot configuration q is given
by

gΦ(t,q) =
1

m

√√√√ m∑
i=1

wi∥sΦ(σi,q)− pi,t∥2 + w0∥bΦ(q)− ut∥,

where parameter σi associates pi,t to the closest point on the robot. Scalars {w0, . . . , wm} ∈ R+

with
∑m

0 wi = 1 are user-defined weight values that prioritize the position importance of the robot
segments relative to the recorded path. In a non-cluttered environment, for instance, the position
of the end-effector may have higher significance compared to other links. On the other hand, when
working in cluttered environments or when required to push objects with body links, the positions
of the body links have higher importance. Hence, we try to find the robot joint values that generate
the minimum distance between all the marker to the robot allocated points.

The temporal robot fitness Gt at time t for a robot represented by Φ is given by

GΦ,t = min
σ,qt

gΦ(t,qt)

s.t. qt ∈ Cf
∥qt − qt−1∥ ≤ ϵ

σj < σk, ∀j < k

(3.5)

where σ = (σ1, . . . , σm)T , qt ∈ C is the joint configuration at time t and Cf ⊂ C is the feasible
configuration subspace to be discussed below. The second constraint enforces joint path continuity
by requiring that two consecutive configurations have a distance smaller than ϵ > 0. Hence, the
initial guess for optimization problem (3.5) would be qt−1. Optimization problem (3.5) minimizes
the wRMSE of the euclidean distances for all recorded markers from the robot for a single time
frame. The solution of problem (3.5) is, in fact, the solution of a multi-point Inverse Kinematics.
Next, we use this formulation to calculate the fitness of a robot along the entire path.

3.3.2 Robot path fitness

Given path set P , the path fitness f(Φ) of a query robot design Φ is the mean of the temporal
fitnesses given by (3.5) for all time frames t ∈ [0, T]. Formally, a path fitness for robot Φ is
defined as

f(Φ) =
1

T

T∑
t=0

GΦ,t. (3.6)

19

Since we require continuous joint motion and we fix the initial pose of the end-effector based on
the task, (3.6) is computed sequentially such that GΦ,t−1 is computed prior to GΦ,t. That is, the
joint solution qt−1 of GΦ,t−1 is required in order to solve for GΦ,t according to (3.5).

Function f(Φ) minimizes the distance between the robot and recorded markers. However,
such minimization is not sufficient since the output may yield a long arm that over-fits the markers
as seen on Figure 3.1b. That is, the path fitness can be zero while the arm is very long. Hence,
we also minimize the area E(Φ) (yellow region in the figure) between robot links and represented
markers. E(Φ) is computed as follows. Recall that, at each time frame, the arm is separated into
m parts by σ from the solution of (3.5). We divide each part into segments of length δm along the
robot axis. For each segment, we calculate the distance from the line formed by the two closest
markers. E(Φ) is the mean distance along the robot length and at all time frames. It is important
to note that minimizing E(Φ) indirectly also minimizes robot length L(Φ).

Finally, the optimal robotic arm Φ∗ that can track path P most accurately is the one with the
minimal robot path fitness value and is the solution of

Φ∗ = argmin
Φ

λff(Φ) + λEE(Φ)

s.t. Φ ∈ Ωf

(3.7)

where λf > 0 and λE > 0 are weighting values. Hence, we wish to minimize the tracking
accuracy, link lengths and spatial link movements. Minimization of link lengths will result in a
smaller and cheaper arm, along with lower joint loads, i.e., not requiring high-torque actuators. It
is important to note that the higher the dimensionality of Φ, i.e., more DOF, it is more likely for
the robot to better track the path. However, we seek for a design comprising of minimal DOF.
Subset Ωf ⊂ Ω is the allowed robot design search space defined in the next section.

3.3.2.1 Alternative approach for robot fitness

We have also tested another approach to calculate the robot path fitness in order to avoid the
dependency of the robot position qi+1 on the previous time joint values qi. In this approach, we
calculate the robot joint value for all time frames at once. The number of optimized parameter is
multiplied by the length of the path time frame. For example, if n = 5 and the duration of the
path is 30 frames, the optimized parameter is 150. In this manner, the joint values for ti+1 do not
depend on the joint values of ti. The problem is then given by

g∗Φ =
1

T

T∑
t=0

1

m

√√√√ m∑
i=1

wi∥sΦ(σi,q)− pi,t∥2 + w0∥bΦ(q)− ut∥,

GΦ,T = min
σ,qt

g∗Φ(q, T)

s.t. q ∈ Cf
σj < σk, ∀j < k

. (3.8)

20

The robot path fitness is then
f∗(Φ) = GΦ,T . (3.9)

However, Results have shown better performance with regards to computation time and robot path

fitness while using f(Φ) of (3.6).

3.3.3 Boundaries and Constraints

This section is define the joint and design search spaces, Cf and Ωf , respectively. The allowed
joint search space Cf in (3.5) ensures proper physical movement of a query robot configuration
and is defined by the joint limits

Cf = {q ∈ C| qmin < q < qmax} (3.10)

where qmin and qmax are the minimum and maximum actuators angle limits, respectively. More-
over, to ensure continuous joint motion of the robot Cf update in each time iteration , t, depends
on qt−1 as mention in (3.5).

For any query robot Φ, the world coordinate frame is positioned at the base. The EE coordinate
frame is fixed to the last robot link. The static values for the DH parameters in (3.3) are limited
according to

ai ∈ [amin, amax] and di ∈ [dmin, dmax] (3.11)

where 0 ≤ amin < amax and 0 ≤ dmin < dmax are pre-defined user variables. Furthermore,
we constrain any two consecutive joints to be non-concentric in order to avoid redundancy. Such
constraint assists in tightening the search sub-space. The constraint, however, can be omitted
with some probability that two robots with n and n − 1 DOF would have the same fitness due
to consecutive joints of the former. A robot solution is considered invalid and omitted if, at time
t = 0, its total length L does not satisfy

Lmin < L < Lmax (3.12)

where Lmin and Lmax are user-defined values. This constraint also aims to filter-out lengthy
designs early on. Moreover, if the tested robot configuration cannot reach EE position at t = 0

with accuracy of 1 mm, the rest of the path is not calculated. As stated above, the valid search
space for qt+1 depends on the previous solution qt. However, the valid search space for q0 is
defined by the joint angular limits. Hence, the robot can be initialized from different joint values
and the rest of the path will be defined accordingly.

Let Ωl ⊂ Ω be the set of design configurations that satisfy (3.11)-(3.12) and let QΦ be the
workspace of robot Φ such that sΦ(σ,q) ∈ QΦ for any q ∈ Cf and σ ∈ [0, 1]. Consequently, a
valid robot configuration must lie within sub-set Ωf ⊂ Ω defined as

Ωf = {Φ ∈ Ω| Φ ∈ Ωl, P ⊂ QΦ}. (3.13)

21

Subset Ωf contains all valid robot configurations.

3.4 Optimization algorithm

The definition of the robot fitness and constraints can now be used to search for the optimal design
Φ∗ of a robot. As discussed in Section 1, kinematic optimization problems are commonly highly
non-linear and cannot be efficiently solved using gradient-based techniques. Hence, we employ a
meta-heuristic search approach.

Comparative results to be shown in the experiments show that the classic PSO performs best
for robot path fitness problem compared to other meta-heuristic optimization algorithms. Conse-
quently, we have proposed a modified algorithm based on the classic PSO. In PSO, N particles
K = {Φ1, . . . ,ΦN} are randomly sampled from a uniform distribution in Ωl. Each particle Φj

is evaluated using the fitness which returns the robot fitness rj and the corresponding path
Qj = {q0, . . . ,qT } by solving (3.7). We store and update a personal best position vector bpj for
particle j based on robot fitness. The global best position for all the particles in K is stored in Φ∗

with fitness r∗. Each particle is then updated according to Φj = Φj + vj where vj is given by

vj = w vj + β1c1(bpj − Φj) + β2c2(Φ
∗ − Φj)) (3.14)

where constants w, c1 and c2 are tunable parameters, and β1 and β2 are random numbers in [0, 1].
The particles are iteratively updated for I iterations.

Algorithm 1: RA-PSO(N,M)

1 Initialize N agents K = {Φ1, . . . ,ΦN} ∈ Ωl;
2 for i = 1→M do
3 for j = 1→ N do
4 rj , Qj ← fitness(Φj) ; // sol. (3.7)
5 if rj < bpj then
6 bpj ← rj ;
7 b← argmin({r1, . . . , rN});
8 if rb < r∗ then
9 Φ∗ ← Φb, r

∗ ← rb, Q
∗ ← Qb;

10 K ← update(K, i) ;
11 return Φ∗, r∗, Q∗

In order to explore whether we can improve the search of the PSO for our particular optimiza-
tion problem or to find the solution in less computation effort or commutation time, we propose the
RA-PSO algorithm. RA-PSO is a designated variant of PSO, designed to address the properties
of search space Φ. Algorithm 1 presents the classic PSO search algorithm which we build upon.
RA-PSO maximizes exploitation of particles within Ωf while avoiding missing-out improved so-
lutions nearby. In order to improve local search, we include two modifications in the update rules

22

of PSO described in Algorithm 2. First, we distinguish between particles currently in Ωf and ones
that are not. In practice and for computational ease, we approximate the presence of a particle in
Ωf by checking if the temporal fitness at the start poses is smaller than 1 mm. Particles not in Ωf

are updated according to the standard PSO which cause aggressive change in the candidate robot
kinematics to explore new regions (line 13). On the other hand, we update a particle Φj that is
within Ωf in a significantly lower rate such that its new position is nearby for local refinement and
effective exploitation. The velocity vj of an agent in Ωf is updated by adding a random number
[cmin, cmax] multiplied by the boundary range of αi for angular variables (line 6) and of di and ai

for length variables (lines 9 and 11).

The second modification aims to improve local search in Ωf . Since Ω is large, high-dimensiona
and non-linear, we explore different dimensions of Ω by their physical representation. That is, we
separately update DH angular (i.e., αi) and length (i.e., ai and di) variables. In such way, the
algorithm is able to better explore subspaces of Ωf . Let D ∈ N be the update frequency of the
angular variables. Then, angular variables in Φj are updated only when iteration index i can be
divided by D. This is implemented using the modulo operator at line 5 of update function. This
method assists in testing various link lengths with the same angular variables and better improve
the exploration of Ωf .

Algorithm 2: update(K, i)
1 for Φj ∈ K do
2 for k = 1→ 3n do // for each dimension in Φj

3 if D ̸= 1 and Φj ∈ Ωf then
4 if mod(i,D) = 0 then // Update either angular or length

variables.
5 if mod(k, 3) = 1 then // Update α elements in Φj according

to (3.3).
6 v

(k)
j ← v

(k)
j + random(cmin, cmax) · 2π

7 else
8 if mod(k, 3) = 2 then // Update a elements in Φj according

to (3.3).
9 v

(k)
j ← v

(k)
j + random(cmin, cmax) · (amax − amin)

10 else // Update d elements in Φj according to (3.3).
11 v

(k)
j ← v

(k)
j + random(cmin, cmax) · (dmax − dmin)

12 else
13 v

(k)
j ← w v

(k)
j + β1c1(bp

(k)
j − Φ

(k)
j) + β2c2(Φ

∗,(k) − Φ
(k)
j)) // Standard

PSO update (3.14)
14 Φj ← Φj + vj ;
15 return K

23

4 Palm tree leaf model

In this section, we modeled a palm tree as a cluttered environment with elastic obstacles. Figure
4.1 shows workers performing a date thinning task in three different scenarios. For a robot to
perform this task and reach a date cluster, it must interact with the tree leaves. Therefore, we aim
to understand the behavior of the leaves and model them as elastic obstacles.

Figure 4.1: Plantation workers try to reach a date cluster and perform the date thinning
task.

The first thing to be noticed is the connection point between the leaf and the trunk. All the leaf
movement is centered around this point. Second, the leaf has five movement primitives: up, down,
right, left and the last is to push the leaf towards the trunk, which bends the leaf. After joining the
plantation workers and learning the details of the thinning task, it is clear that only the first four
primitives described above - up/down and right/left, are necessary to complete the task of reaching
the date cluster. With this conclusion in mind along with the leaf connection point, the leaf can be
modeled as a hinged rigid beam with torsional springs, as shown in Figures 4.2 and 4.3. In this
approach, all biological properties of the leaf can be disregarded.

24

Figure 4.2: Beam with a tor-
sional spring.

Figure 4.3: Main movement
directions of a leaf.

When exerting force onto the beam, the beam rotates around it’s base joint. The reaction force
from the beam can be calculated according to Hawk’s Law. Assuming a known constant spring
coefficient K and leaf perturbation ∆x, the reaction force is

F = K∆x. (4.1)

This section describes the experiment that was done in order to find the representation of a leaf
as a beam with torsional springs at the base. The leaf properties may change with the age of the
tree. For example, the older the tree, the longer its leaves become, which affects their mechanical
properties. The leaf has four main movement directions. Therefore, we seek for the leaf equation
in each direction separately but eventually the leaf can move throughout the whole radius around
it’s base, and we can perform super-position of vectors to define the force in a specific direction.
Another important property of the leaf is that it is anisotropic, due to it’s fibrous nature, which
means that the leaf is expected to behave differently in different directions. All of these points
were taken in consideration during the design of the experiment.

4.1 The experimental apparatus

A crane-like device was designed and fabricated in order to measure accurate force data when
applying load on a leaf. The device enables to acquire force measurements while applying various
pre-known movements, and enable repeatability in a disorganized environment of the plantation.
The device is presented in Figure 4.4. To overcome the uneven land surface, and to verify that
the system is leveled, leveling feet were attached to the system. To maintain equal movements in
each test, the device was equipped with hooks. By changing the rope configuration, the device has
the ability to pull the leaf in all desired directions - up ,down, right and left as presented in Figure
4.5. By using pulleys, the force gauge can indicate the reaction force of the leaf in all different
configurations. The combination of the reaction force and the movement of the leaf, when applied
to Hook’s Law, will provide the spring constant K, for each point along the leaf in each direction.

25

Figure 4.4: The experimental system used to measure the force on a palm tree leaf.

26

Figure 4.5: Demonstration of the system for measuring reaction forces during the pull
of the leaf in all directions.

4.2 Experiment 1- Spring correlation

The first experiment attempts to correlate the changes of leaf behaviour at each point along it to a
linear equation (4.1). The experiment was performed on 6 different leaves taken from 6 different
trees. The leaves were in the same age-leaf length. Each leaf was approximately 2.5 m of length.
The leaves were divided into five segments, by the four different measuring points along them.
The points were marked at 20%, 40%, 60%, 80% of the leaf (around 50, 100, 150 and 200 (cm),
respectively), as shown in Figure 4.6. To set the measuring point along the leaf, we use

distance_present =
Testing_point_distance

Leaf_length
. (4.2)

The leaf movement was between 5 – 60 cm in each one of the 4 measuring points, and in each
direction. Each point on the leaf was measured 12 times in each direction, while increasing the
movement by five centimeters each time. The force was measured on the opposing direction to the
movement.

27

Figure 4.6: Leaf measurement points for experiment 1.

4.2.1 Spring correlation results

The results presented in Figures 4.7-4.10 show a linear correlation between the force and ∆x,
for each measured point at each direction. Each figure presents the results for all six leaves, for
the same distance from the trunk and in the same direction. All the points, in all four directions,
show the same linear behavior. This shows that the leaf truly behaves like the model. The average
R-square for all measurements is 0.947 (see graph in appendix).

(a) (b)

(c) (d)

Figure 4.7: Force with respect to ∆x of leaf movement in the left direction in 6 different
leaves. Distance from the tree trunk is (a) 50, (b) 100 (c) 150 and (d) 200 (cm).

28

(a) (b)

(c) (d)

Figure 4.8: Force with respect to ∆x of leaf movement in the right direction in 6 differ-
ent leaves. Distance from the tree trunk is (a) 50, (b) 100 (c) 150 and (d) 200 (cm).

(a) (b)

(c) (d)

Figure 4.9: Force with respect to ∆x of leaf movement in the up direction in 6 different
leaves. Distance from the tree trunk is (a) 50, (b) 100 (c) 150 and (d) 200 (cm).

29

(a) (b)

(c) (d)

Figure 4.10: Force with respect to ∆x of leaf movement in the down direction in 6
different leaves. Distance from the tree trunk is (a) 50, (b) 100 (c) 150 and (d) 200 (cm).

The next step is to understand how the spring constants change along the leaf, and which
parameter has the best correlation. Three parameters were checked: normalised distance from the
trunk, leaf mass and leaf diameter. The normalised distance was calculated using (4.2). Figure 4.11
shows all values (spring constants) by point normalised distance from the trunk for all directions.
After looking at the raw results, it is clear that a linear model is not suitable for describing the
spring constants. Exponential equation in the form of

y = y0e
−bt (4.3)

is more suitable for this kind of scattering.

30

(a) (b)

(c) (d)

Figure 4.11: Calculated spring constant K with respect to the normalized distance from
the trunk for directions (a) up, (b) down, (c) right and (d) left.

A nonlinear exponential regression was performed on the data to find y0 and b for each param-
eter (normalised distance from the trunk, leaf mass and leaf diameter) to find the best parameter to
characterize the K behaviour along the leaf. The statistical results are shown in Table 4.1. Figure
4.12 presents the results for all tested parameters in all directions. The best parameter to describe
the K distribution along the leaf length is the normalised distance from the tree trunk. Moreover,
it is the only parameter that can be measured during leaf movement without damaging the tree
canopy.

31

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.12: Calculated spring constant K by normalized distance from the trunk, leaf
mass and leaf diameter for all tested directions down (a,b,c) up (d,e,f) right (g,h,i) and
left (j, k ,l). The black dots are the raw results and the blue curves represent the expo-
nential regression results.

32

Table 4.1: RMSE for nonlinear regression for K behavior along the leaf length in all
directions

RMSE
Normelized distance Diameter (m) Mass (Kg)

Up 0.789 0.79 0.67

Down 0.84 0.75 0.30

Left 0.89 0.83 0.41

Right 0.77 0.85 0.41

Mean 0.82 0.80 0.44

4.3 Right/Left trees

Palm trees can be characterized by the growing direction of their eaves, either right or left. For
instance, Figure 4.13 presents a right tree. The direction represents the rotation inclination of the
tree. Following the tree rotation, the leaves get the opposite rotation direction and this phenomenon
influences their behaviour when an external force is exerted.

We check the influence of the tree rotation on leaf behaviour when force is exerted. We expect
to see difference between pulling to the right and left directions - right pulling in a right tree is
expected to be easier than pulling to the left direction, and vice versa. The results presented in
Figure 4.14 do not support this hypothesis and there is minor force difference between right and
left trees.

Figure 4.13: Example of tree rotation to the right.

33

Figure 4.15: Measuring auxiliary device on the stage.

(a) (b)

Figure 4.14: K (N/m) with regards to the normalised distance from the tree trunk (%)
for left (a) and right (b) directional trees. Blue and green lines present the results for
right and left trees, respectively.

4.4 Experiment 2 - Adjusting the equations for all leaf lengths

The physical property of the leaf may change with the age of the tree. This section checks the
influence of the age and the length of the leaf in mature trees. With such insight, the spring
constant calculated with (4.2) in the previous section can be adjusted. A leaf of a mature tree
is taken from the treetop at height 18 m above ground. To reach the tree top, the farmer must be
assisted with a mast lift in the orchard (Figure 4.15). In mature trees, the trunk has some flexibility,
like high building, this property helps the tree withhold from strong winds. The force measurement
from this leaf was more noisy due to the movement of the tree and the mast lift in the presence of
slight winds.

Table 4.2 presents the results for non-linear regression. Two parameters were checked for
correlation: distance and normalised distance (%). The distance is a measure from the tree trunk

34

Table 4.2: Statistical results for K behavior with exponential correlation for all tested
leaf movement directions and lengths

RMSE
Normalized distance Distance (m)

Up 0.78 0.84
Down 0.63 0.56
Left 0.89 0.83

Right 0.78 0.75
Mean 0.77 0.74

in meters, and the normalised distance is computed according to (4.2). The normalized distance
shows better statistical results with root mean square error (RMSE) of 0.77. Figures 4.16-4.19
show that the K spring coefficient changes along the leaf with an exponential distribution.

(a) (b)

Figure 4.16: K (N/m) with regards to (a) the normalised distance from the tree trunk
(%) calculated according to (4.2) and, (b) the measured distance from the trunk in me-
ters, for the UP direction. Blue curve presents the results for old trees with long leaves
and the green curve presents the results for younger trees with medium leaf length.

(a) (b)

Figure 4.17: K (N/m) with regards to (a) the normalised distance from the tree trunk
(%) calculated according to (4.2) and, (b) the measured distance from the trunk in me-
ters, for the Down direction. Blue curve presents the results for old trees with long leaves
and the green curve presents the results for younger trees with medium leaf length.

35

(a) (b)

Figure 4.18: K (N/m) with regards to (a) the normalised distance from the tree trunk
(%) calculated according to (4.2) and, (b) the measured distance from the trunk in me-
ters, for the Right direction. Blue curve presents the results for old trees with long leaves
and the green curve presents the results for younger trees with medium leaf length.

(a) (b)

Figure 4.19: K (N/m) with regards to (a) the normalised distance from the tree trunk
(%) calculated according to (4.2) and, (b) the measured distance from the trunk in me-
ters, for the Left direction. Blue curve presents the results for old trees with long leaves
and the green curve presents the results for younger trees with medium leaf length.

4.5 Experiment conclusion - Fit Leaf Equations for all leaf lengths

The results of Experiment 1 and 2 establish a leaf model. The spring constant K exponentially
changes along the leaf. The following equations represent the spring constant for each pulling
direction.

Up : K = 2226.7e−5.52x (4.4)

Down : K = 977.2e−5.13x (4.5)

Right : K = 2854.9e−7.81x (4.6)

Left : K = 5813.3e−11.41x (4.7)

36

(a) (b)

(c) (d)

Figure 4.20: Final equations for K in (a) up, (b) down, (c) right and (d) left directions.
The black curves represent the correlation and the black dots are from the raw data.

37

5 Results & Discussion

5.1 Experiments

In this chapter, we will describe the experiments and results to verify and demonstrate the opti-
mization method proposed in Chapter 3.

5.1.1 Setup

Using a motion capture system (OptiTrack system with eight PrimeX -41 cameras) shown in Figure
5.1, we have recorded a human arm performing desired tasks. During recording, four bands are
places on the shoulder, upper arm, forearm and hand. Each band has several fiducial markers
considered together as a rigid body. Hence, the motion capture system provides real-time data
stream of spatial positions of the bands. Data stream may also include orientation of the bands
and the hand band in particular. The shoulder is considered as the base position, Ob. The desired
robot motion P is, therefore, the paths of the three distal bands relative to the shoulder band.

(a) (b)

Figure 5.1: (a) PrimeX -41 camera used to record P and the (b) Motive software used to
analyze motion data.

38

5.1.2 Test cases

To validate the proposed method, three test scenarios were considered. For each scenario, a simu-
lated environment was built in the laboratory. In packaging Scenario I, an item is picked-up from a
conveyor belt, manipulated around an obstacle and placed within a cardboard box (Figure 5.2); In
Scenario II, welding was performed where a tool must trace a path across an object (Figure 5.3).
The figures also show the recorded paths P of the three distal bands relative to the shoulder band.
In Scenario II, we constrain the robot end-effector to also trace the orientation of the human hand.
Scenario III tests a manipulator movement inside a canopy of a palm tree in order to place the ma-
nipulator in the position to perform the thinning action of the dates cluster. Chapter 4 presented the
results to establish the theory that palm tree leaves act as elastic obstacles during force interaction.
In order to create a data tree canopy, a mock-up was built according to the geometry of the Palm
tree canopy. The mock-up is presented in Figure 5.4. The leaf holders of this tool were built based
on the geometry parameters taken from an adult palm tree as seen in Figure 5.5. No shaking or
vibration were observed and, thus, no path smoothing was required. The user-defined parameters
and optimization hyper-parameters used for all tests cases are shown in Table 5.1. The hyper-
parameters were chosen based on the requirements of the robot in each test case and preliminary
experiments.

Figure 5.2: Recording of a human arm path in an industrial packaging scenario I. A
robotic arm is to be optimized to accurately track the recorded path. The end-effector
of the robot must follow the path of the hand markers while its arm should follow the
human arm markers to avoid obstacles.

39

Figure 5.3: Recording of a human arm path in an industrial welding scenario (II). A
robotic arm is to be optimized to accurately track the recorded path. The end-effector
of the robot must follow the path and orientation of the hand markers.

Figure 5.4: Mock-up to simulate a palm tree canopy for recording a date thinning path
within the laboratory.

40

(a) (b)

Figure 5.5: (a) Mock-up to simulate a palm tree canopy. (b) Palm tree leaf growth
orientation .

Table 5.1: Optimization parameters

User-defined parameters

l 0.7 m Lmin 0.6 m Lmax 1.5 m ϵ 10 deg

amax 0.5 m amin 0 m dmax 0.5 m dmin 0 m
qmax 180◦ qmin −180◦ δm 10 mm

Optimization hyper-parameters

w 0.8 c1 0.4 c2 0.6 N 400

cmax 0.5 cmin −0.5 M 200

Scenario I - Optimization weights

w0 0 w1 1/6 w2 1/3 w3 1/2

λf 15 λE 5

Scenario II - Optimization weights

w0 0.2 w1 0 w2 0.1 w3 0.7

λf 15 λE 5

Scenario III - Optimization weights

w0 0.1 w1 0 w2 0.2 w3 0.7

λf 15 λE 10

41

Table 5.2: Optimization algorithms parameter set-up for solving robot temporal fitness
(3.5)

Alg Particle Iteretion Data
PSO 50 50 w =0.8, c1=0.4, c2 = 0.6
ABC 50 50 n_trails =10
ES 50 50 child_ratio= 0.5

WOA 50 50 b = 1
GA 50 50 p_selection =0.75, p_mutation=0.25, p_crossover=0.5
SA 50 50 T = 100, beta = 0.99

Figure 5.6: (Left) Recording of a human arm path with the palm tree mock-up built in
the laboratory (III). A robotic arm is to be optimized to accurately track the recorded
path. The end-effector of the robot must follow the path and orientation of the hand
markers in order to interact with the canopy leaves. (Right) Full tree mock-up built in
the laboratory

5.2 Temporal fitness

We first analyze the best algorithm to solve the robot temporal fitness (3.5). We compare between
seven different algorithms including PSO, Artificial Bee Colony (ABC), Evolution Strategies (ES),
Whale Optimization Algorithm (WOA), Genetic Algorithm (GA), Simulated Annealing (SA) and
Sequential Least Squares Programming (SLSQP) [55]. Table 5.2 presents all predefined algorithm
parameters. The results of each algorithm are averaged over 30 repetitions and ten different robot
configurations in three different time instants along P .

Results of the mean score and time of convergence are summarized in Table 5.3. The means of
the standard deviation for all the algorithms are summarized in Table 5.4. Figure 5.7 demonstrates
the mean score over time for each tested algorithms. First, SLSQP does not converge well and
is, therefore, not suitable for this problem. ABC converges well with low standard deviation
and good repetition. However, it has the highest computation time. The remaining algorithms
converge relatively similar with small variations about the mean temporal fitness. In particular,

42

PSO provides somewhat good convergence with the lowest computation time. Hence, the gain in
convergence for ABC over PSO is not worth the large effort in computation.

(a) (b)

(c) (d)

Figure 5.7: Temporal fitness score from (3.5) with respect to the time of convergence
(sec) for all (a) n = 3, (b) n = 4, (c) n = 5 and (d) n = 6.

Figure 5.8 shows the coefficient of variation (CV) (the ratio between the standard deviation
and the mean) results for the score and time parameters to solve (3.5). For n = 3, 4 the CV of
the time parameter for PSO shows the lowest results, 0.047 and 0.77, respectively. GA shows
the lowest result for n = 5. For n = 6, ABC shows the lowest result. The difference between
ABC and PSO in n = 5 and n = 6 is 34% and 16%, respectively. However, this improvement
is not worth the computation time in our problem. For the temporal fitness score, SLSQP shows
the lowest results. However and as shown in Tables 5.3 and 5.4, the method is not suitable for
this optimization problem. GA ,PSO, WOA and ABC show the same behavior. Consequently, we
choose to use PSO to solve problem (3.7).

43

Table 5.3: Optimization performance for solving robot temporal fitness (3.5) using var-
ious meta-heuristic algorithms

Mean GΦ,t (mm) Median GΦ,t (mm) Mean computation time of GΦ,t (s)
n 3 4 5 6 3 4 5 6 3 4 5 6

GA 49.04 ±25.10 72.90±50.88 48.50±41.7 36.12±17.62 39.90 51.62 28.33 30.36 5.05 7.96 11.56 15.99
PSO 49.35 ±25.02 71.97 ±52.07 48.76±42.88 32.70 ±17.97 40.11 49.31 26.21 23.60 2.84 4.59 6.51 8.95

WOA 53.13±42.80 74.69 ±50.98 71.80±9.92 40.96 ±19.49 40.78 55.43 32.22 34.18 2.87 4.59 6.58 9.25
ES 48.96 ±25.10 71.93±51.83 49.42±42.87 35.91 ±18.40 39.97 50.56 27.81 28.55 4.37 6.78 9.94 13.62

ABC 48.67 ±25.25 69.51 ±53.22 44.40±43.66 29.52 ±18.46 39.61 49.03 30.67 19.92 8.86 14.09 19.79 27.50
SLSQP 179.25±33.51 207.39 ±34.32 203.92±40.67 214.84±30.97 174.75 206.36 215.00 213.89 7e−3 15e−3 25e−3 39e−3

SA 51.98 ±24.58 82.44±51.74 63.99±45.32 54.97±19.58 41.71 61.18 41.77 45.51 5.70 9.16 13.25 18.05

Table 5.4: Mean of the standard deviation of optimization performance for solving robot
temporal fitness (3.5) using various meta-heuristic algorithms

Mean over Std. of 30 repetitions for GΦ,t

Alg 3 4 5 6
GA 0.76 3.05 3.65 5.14
PSO 2.07 4.48 6.57 6.79

WOA 1.95 4.95 7.34 8.57
ES 0.79 2.82 5.23 5.63

ABC 0.008 0.86 2.50 3.22
SLSQP 60.35 55.04 48.87 71.00

SA 4.34 8.89 10.03 12.10

(a) (b)

Figure 5.8: (a) Coefficient of variation for the time parameter. (b) Coefficient of varia-
tion for the score parameter.

5.2.1 Robot path fitness - f∗(ϕ)

This experiment goal is to calculate the robot joint value for all time frames at once using equation
(3.8), g∗(ϕ). The number of optimization parameters is multiplied by the length of the path time
frame. For example, if n = 5 and the duration of the path is 30 frames, the dimension of the
optimization vector is 150. In this manner, the joint values for ti+1 do not depend on the joint
values of ti.

44

We compare the results to (3.7) (g(ϕ)). As mentioned in the previous section, in order to
calculate f(ϕ) we iterate over time and set new joint limits for each iteration based on the previous
robot state. A single robot was tested 10 times with the same path n = {4, 5, 6}. To solve f∗(ϕ),
we use I = 500 and N = 1000. For f(ϕ), we use M = 150 and N = 100. For both, c1 = 0.4,
c2 = 0.6 and w = 0.8 are used. The results in Figure 5.9 show that f(Φ) is better by a scale
of 1.48, 2.08 and 2.14 for n = 4, n = 5 and n = 6, respectively. Figure 5.10 presents the
computation time results. The computation time with f∗(Φ) is significantly larger by 31.35%.
The computation time has a large impact and we choose to continue our tests with f(ϕ).

Figure 5.9: Mean results of 10 repetitions for f(ϕ) and f∗(ϕ) with a full path and with
regards to n = 4...6.

Figure 5.10: Mean time of 10 repetitions for f(ϕ) and f∗(ϕ) with a full path and with
regards to n = 4...6.

5.3 Robot fitness tests with different algorithms

This section analyzes the best algorithm to solve robot fitness (3.7). We analyze the algorithms for
scenario I. Furthermore, we compare between four different algorithms including PSO, Artificial
Bee Colony (ABC), Genetic Algorithm (GA) and Simulated Annealing (SA). Set-up parameters
for each algorithm are summarized in Table 5.5. The results for each algorithm are averaged over
30 repetitions and presented in Table 5.6.

45

Table 5.5: Optimization algorithms parameter set-up for solving robot fitness Φ∗

particle Iteration data
ABC 400 200 n_trials: 10

GA 400 200 p_selection:0.75, p_mutation:0.25, p_crossover: 0.5

PSO 400 200 w: 0.8, c1: 0.6, c2: 0.4

SA 400 200 T : 100, beta: 0.99

PSO presents the best mean results for Φ∗ with n = {3, 4, 5, 6}. On the other hand, SA
computation time is lower from the PSO for n = 3 but the score of the PSO is better in 40% for
the SA. ABC has a standard deviation lower by 70% than the PSO. However, the mean iteration
time is 2.35 times than the PSO. PSO also provides the best results for f(Φ) and E(Φ) with
n = {3, 4, 5, 6} compared to all tested algorithms. Moreover, PSO shows the lower sensitivity
to increasing n = {4, 5, 6} in all tested parameters. In other words, PSO can manage a large
number of optimization parameters (larger search space) and find the best results. The results for
n = 3 behave differently for all parameters and algorithms. The reason is assumed to be the lack
of enough DOF to track the complex recorded path.

ABC and GA require the largest computation time compared to PSO and SA. SA scores
slightly higher than the PSO in all the parameters for all tested n with slightly lower standard
deviation than the PSO. Therefore, the added value of the ABC algorithm is not worthy for our
optimization problem and we choose the PSO to solve for Φ∗.

46

Table 5.6: Mean results for optimization algorithms solving robot fitness Φ∗

Mean±Stdev
3 4 5 6

ABC 0.86 ± 0.10 0.62±0.05 0.57±0.03 0.51±0.04
GA 1.03±0.20 0.62±0.08 0.6±0.06 0.58±0.04
PSO 0.59±0.17 0.5±0.06 0.48±0.08 0.48±0.06

Φ∗

SA 1±0.09 0.67±0.11 0.6±0.05 0.57±0.04

ABC 4.24±0.83 3.21±0.81 3.37±0.37 3.52±0.42
GA 5.26±2.50 4.38±1.76 3.47±3.61 2.91±1.06
PSO 1.80±1.27 0.58±0.17 0.63±0.34 0.64±0.15

Time (h)

SA 0.72±0.08 1.16±0.14 1.65±0.25 1.84±0.25

ABC 35.16±5.34 26.62±2.76 23.90±1.03 20.69±2.05
GA 46.48±10.32 24.92±3.29 25.66±2.99 23.82±2.94
PSO 23.92±9.30 20.39±3.01 19.36±4.37 19.12±3.83

f(Φ)(mm)

SA 44.62±6.33 27.67±5.94 24.17±2.60 24.52±1.54

ABC 65.86±11.47 43.55±2.64 41.79±3.88 40.56±4.10
GA 66.63±13.74 49.70±8.32 43.28±5.95 45.08±3.45
PSO 46.93±10.60 38.92±4.38 38.40±5.11 38.44±3.61

E(Φ) (mm)

SA 66.63±8.70 50.01±8.64 46.43±5.59 41.29±5.25

ABC 0.81±0.10 0.73±0.02 0.72±0.02 0.73±0.02
GA 0.76±0.05 0.77±0.06 0.73±0.02 0.75±0.03
PSO 0.74+0.05 0.72±0.02 0.72±0.02 0.72±0.02

L(Φ) (m)

SA 0.78±0.05 0.78±0.05 0.75±0.03 0.73±0.02

5.4 RA-PSO

This section tests the proposed RA-PSO algorithm. First, we test the value of D (the update
frequency of the angular variables) for scenario I and compare all the tested parameters. Second,
we compare the RA-PSO performance for scenarios II and III. We test all scenario convergence
iterations and Ωf . All the results in this section are the mean results for 30 repetitions of each test.

5.4.1 Find D limits

Figure 5.11 presents Φ∗ for scenario I with regards to D. For n = 3 we see that Φ∗ decreases until
D = 3 and increases for D = 4, 5, 6. The optimization for n = 4 behaves the same for D = 2, 3, 4

and decreases for D = 5. When D > 5, the robot fitness Φ∗ has a trend upwards. For n = 5, 6

and D = 2, 3, increasing D does not impact the final result of Φ∗. The standard deviation with
regards to D is relatively constant as shown in 5.11b. Moreover, the standard deviation decreases
when n increases.

47

(a) (b)

Figure 5.11: (a) Mean and (b) standard- deviation results for Φ∗ with n = 3, 4, 5, 6 and
D = 1, 2, . . . , 11 over 30 repetitions.

Figure 5.12 presents the mean score of f(Φ) and E(Φ) for 30 repetition while preforming
scenario I. Φ∗ behaves the same as f(Φ). We expect this kind of behavior due to the fact that λf

is 75% of the calculation of Φ∗. E(Φ) behave the same for D = 2, 3, 4 for n = 4, 5 with low
variance for D. The largest improvement in E(Φ) is for n = 3 for D = 2, 3, 4, 5. For n = 6 there
is a step up in the results from D > 4. Taking all in consideration, we choose to continue our
testing all scenarios for D = 2, 3, 4, 5.

(a) (b)

Figure 5.12: Mean results for (a) E(Φ) and (b) f(Φ) for n = 3, 4, 5, 6 and D =
1, 2, . . . , 11 over 30 repetitions.

5.4.2 Compare all scenarios optimization results

Figure 5.13 presents the robot fitness result with regards to D for all scenarios and n. Table 5.7
presents the ratio for the robot fitness for D = 2, 3, 4, 5 for all n. The ratio is calculated in the
following form

∆ =
ResultD=1 −ResultD=i

ResultD=1
. (5.1)

Negative results indicate improvement while positive suggests that the PSO performs better than
the RA-PSO. The results imply that the complexity if the recorded path P has impact on the RA-
PSO results. We sort the difficulty of the tested robot path P from the easiest (scenario I) to the
hardest (scenario III). As shown in Figure 5.13, a robot with larger n scores less than a robot with
lower n. Moreover, we can see that, for scenario III, the relative error from the classic PSO in the
performance of Φ∗ is between 7% improvement to 4% reduction. For scenario I the results show
larger variation between 15% improvement to 12% reduction.

48

(a)

(b)

(c)

Figure 5.13: Robot Fitness (3.7) with D = 2, 3, 4, 5 and n = 3, 4, 5, 6 for scenarios (a) I,
(b) II and (c) III.

For scenario III and n = 4, 5, 6, the RA-PSO improves the results for E(Φ). For scenario II,
E(Φ) presents low performance than the classic PSO. The reason for this behavior is the com-
plexity of P and the set-up of the wn weights. In this path, the robot is ordered to also trace the
orientation of P . This has impact on the ability of the robot to track f(Φ) and we set a lower
weight to E(Φ).

49

Table 5.7: Percentage (%) of improvement for D = 2, 3, 4, 5 for all n and all scenarios.
Negative score implies improvement from the classic PSO.

Φ∗ f(Φ) E(Φ)
D D D

n scenario 2 3 4 5 2 3 4 5 2 3 4 5
I -10.54 -15.64 -5.92 -7.4 -3.99 -9.19 3.22 -0.39 -20.07 -25.04 -19.24 -17.61
II 3.03 9.84 0.86 5.04 12.08 14.11 7.65 12.74 -12.16 2.66 -10.51 -7.87
III -7.64 -2.95 -2.17 -2.69 -2.76 3.49 4.16 2.44 -17.59 -16.08 -15.08 -13.143

Mean Improvement(%) -5.05 -2.92 -2.41 -1.68 1.78 2.80 5.01 4.93 -16.61 -12.82 -14.94 -12.87
I 1.41 0.95 -0.38 -7.05 5.75 5.46 2.04 -3.51 -5.44 -6.21 -4.26 -12.68
II 2.92 8.73 9.06 7.69 5.15 11.59 10.83 10.87 -18.2 2.63 5.27 0.91
III -3.9 0.15 -2.17 -1.83 -1.39 3.21 2.19 -0.47 -9.32 -6.18 -11.18 -4.624

Mean Improvement(%) 0.14 3.28 2.17 -0.40 3.17 6.75 5.02 2.30 -10.99 -3.25 -3.39 -5.46
I 0.73 -1.06 5.47 12 1.93 0.05 6.99 12.96 -1.31 -2.96 2.89 10.36
II -0.18 4.24 9.21 8.13 0.54 5.54 10.04 7.54 -1.8 1.34 7.34 9.45
III -6.52 -4.3 -1.74 -3.95 -3.57 -1.7 1.96 1.18 -12.48 -9.54 -9.24 -14.35

Mean Improvement(%) -1.99 -0.37 4.31 5.39 -0.37 1.30 6.33 7.23 -5.20 -3.72 0.33 1.84
I -2.31 -3.07 3.83 -2.31 -2.54 -4.65 4.25 -0.9 -1.91 -0.34 3.1 -4.73
II 3.59 7.25 7.13 6.78 7.54 12.18 10.93 8.76 -4.55 -2.93 -0.69 2.67
III 0.05 -0.09 2.03 3.55 1.36 -0.94 0.98 4.12 -2.58 1.59 4.14 2.416

Mean Improvement(%) 0.44 1.36 4.33 2.67 2.12 2.20 5.39 3.99 -3.01 -0.56 2.18 0.12

(a) (b) (c)

(d) (e) (f)

Figure 5.14: Results for f(Φ) and E(Φ) with D = 2, 3, 4, 5, n = 3, 4, 5, 6. Results for
f(Φ) in scenarios (a) I, (b) II and (c) III. Results for E(Φ) in scenarios (d) I, (e) II and
(f) III.

To summarize the results of the RA-PSO, we can see that the differences of all D = 2, 3, 4, 5

and n = 3, 4, 5, 6 between the classic PSO and the RA-PSO is low (lower than 10%). Finally, we
can say that the results of the RA-PSO are the same as the classic PSO and we need to find other
way to check if the RA-PSO is worthy.

5.4.3 Convergence iteration and valid particles

This section test the number of iterations to convergence and the number of valid particles in Ωf

for D = 2, 3, 4, 5. Due to the fact that we run all the tests on different capacity of the computer,
we cannot compare the iteration time and we seek for new parameter to evaluate the RA-PSO
performance.

50

First, we check the mean number of iterations for convergence for 30 repetitions. The results
shown in Figures 5.15 and 5.16 are the mean number of iterations for convergence Mi for all and
each scenario, respectively, with respect to parameter D. Note that D = 1 is the regular PSO
algorithm. Hence, for n = 3 and D = 2, 3, converge is 13% faster than the regular PSO. For
n = 4 and D = 3, converge is faster by 25%. The difference between D = 2, 4, 5 is lower than
1%. For n = 5 and D = 2, 3, 4, 5, converge is faster but the largest impact is for D = 5 (29%).
For n = 6 and D = 4, the convergence is faster by 55%. All the results for the improvement in
convergence for all n and all tested D are presented in Table 5.8.

Figure 5.15: Mean number of iterations to convergence for all scenarios . 1 ≤ D < 6 ,
n = 3, 4, 5, 6

(a) (b) (c)

Figure 5.16: Mean convergence iteration . 1 ≤ D < 6 , n = 3, 4, 5, 6 for scenario I
scenario II and scenario III,(a),(b),(c) respectively.

Figure 5.17 presents the mean valid agents found in Ωf in each iteration for all scenarios and
for n = 3, 4, 5, 6. Figure 5.18 presents the results for each scenario separately. The percentage
of improvement from the classic PSO is presented in Table 5.9. All scenarios exhibit the same
behavior for all n. Moreover, it seems that the valid agents for all scenarios for all D are decreasing
while increasing n. It is assumed that the size of Ωf has large impact on the number of particles in
Ωf found in each iteration. For all scenarios, the classic PSO with n = 3 shows a unique number
of valid agents found during each iteration. Using RA-PSO yields a more accurate search in Ωf

while keeping the same objective function fitness as discussed in Section 5.4.2. The classic PSO
have the largest number of valid particles (Ωf) but it converges in a higher number of iterations
with almost the same results as the RA-PSO.

51

Table 5.8: Improvement in percentage (%) from classic PSO and converge iteration
result for D = 2, 3, 4, 5 for all n all scenarios, Negative results implied on improvement
from the classic PSO.

Iteration number improvement (%) Iteration number score
D D

n scenario 2 3 4 5 1 2 3 4 5
I -23.93 -26.15 -6.58 -12.29 124.67 94.83 92.07 116.47 109.34
II 16.59 6.47 23.86 17.46 91.69 106.90 97.62 113.57 107.70
III -15.07 -6.33 0.36 -2.92 129.40 109.90 121.21 129.86 125.623

Mean Improvement(%) -7.47 -8.67 5.88 0.75 115.25 103.88 103.63 119.97 114.22
I -23.23 -33.51 -20.58 -15.59 104.30 80.07 69.34 82.83 88.03
II -39.73 -30.17 -41.32 -19.31 105.13 63.37 73.41 61.69 84.83
III 0.00 -12.46 -5.41 -21.79 120.14 120.14 105.17 113.63 93.964

Mean Improvement(%) -20.99 -25.38 -22.44 -18.90 109.86 87.86 82.64 86.05 88.94
I -25.69 -7.35 -26.11 -60.26 86.17 64.03 79.83 63.67 34.24
II -22.67 -37.41 -67.64 -47.22 106.04 82.00 66.37 34.31 55.97
III -6.85 8.43 23.36 17.49 91.75 85.46 99.48 113.19 107.805

Mean Improvement(%) -18.40 -12.11 -23.46 -30.00 94.65 77.16 81.89 70.39 66.00
I -21.32 -24.81 -37.06 -21.87 90.79 71.43 68.26 57.14 70.93
II -63.33 -40.29 -52.02 -56.91 101.34 37.17 60.52 48.63 43.67
III -30.59 -37.28 -44.21 -29.51 120.48 83.63 75.57 67.21 84.926

Mean Improvement(%) -38.41 -34.13 -44.43 -36.10 104.20 64.08 68.12 57.66 66.51

Figure 5.17: Mean valid agent of iteration for all scenarios . 1 ≤ D < 6 , n = 3, 4, 5, 6

(a) (b) (c)

Figure 5.18: Mean valid agent of iteration . 1 ≤ D < 6 , n = 3, 4, 5, 6 for scenario I
scenario II and scenario III,(a),(b),(c) respectively.

52

Table 5.9: Improvement from PSO in percentage (%) and valid agent found in Ωf result
for D = 2, 3, 4, 5 for all n all scenarios. Blue marks improvement compared to the
classic PSO.

Valid Agents improvment (%) Valid Agents score

D D

n scenario 2 3 4 5 1 2 3 4 5

I -87.62 -90.49 -89.70 -87.41 30.19 3.74 2.87 3.11 3.80
II -91.34 -92.28 -92.76 -90.60 37.17 3.22 2.87 2.69 3.49
III -88.89 -91.53 -91.25 -93.33 45.55 5.06 3.86 3.99 3.04

3

Mean Improvement(%) -89.28 -91.43 -91.24 -90.45 37.64 4.01 3.20 3.26 3.44

I -56.62 -63.88 -54.89 -60.52 4.73 2.05 1.71 2.14 1.87
II -75.76 -69.25 -77.47 -75.14 6.97 1.69 2.14 1.57 1.73
III -57.24 -65.08 -64.85 -72.18 9.10 3.89 3.18 3.20 2.53

4

Mean Improvement(%) -63.20 -66.07 -65.74 -69.28 6.94 2.55 2.34 2.30 2.04

I -48.53 -50.98 -56.57 -67.10 3.53 1.81 1.73 1.53 1.16
II -43.90 -52.04 -66.02 -63.32 3.98 2.23 1.91 1.35 1.46
III -39.24 -50.63 -59.68 -50.96 4.88 2.96 2.41 1.97 2.39

5

Mean Improvement(%) -46.21 -51.51 -61.30 -65.21 3.75 2.02 1.82 1.44 1.31

I 16.44 1.72 -11.51 -14.09 1.47 1.72 1.50 1.30 1.27
II -25.55 -43.58 -47.41 -50.45 2.34 1.75 1.32 1.23 1.16
III -32.57 -47.52 -51.15 -59.19 3.09 2.08 1.62 1.51 1.26

6

Mean Improvement(%) -13.89 -29.80 -36.69 -41.24 2.30 1.85 1.48 1.35 1.23

5.4.4 Normalized Computation Effort Index (NCEI)

In section 5.4.3, we saw that the RA-PSO converges faster with lower number of valid particles in
Ωf . In order to wisely choose D, we take in consideration both the improvement in the search and
the earlier convergence. Therefore, we define a new parameter Θ denoting Normalized Compu-
tation Effort Index (NCEI). This parameter is the multiplication between the number of iterations
M and the number of valid particles found in Ωf . Figure 5.19 presents the mean results for all
scenarios together. Figure 5.20 presents the results for each scenario separately. The improvement
from the PSO is presented in Table 5.10.

53

Figure 5.19: Normalized Computation Effort Index for all scenarios . 1 ≤ D < 6 ,
n = 3, 4, 5, 6

(a) (b) (c)

Figure 5.20: Normalized Computation Effort Index . 1 ≤ D < 6 , n = 3, 4, 5, 6 for
scenario I scenario II and scenario III,(a),(b),(c) respectively.

With regards to the NCEI, it is clearly shown that the RA-PSO is better for all n and for all
scenarios. The improvement is lower for larger n. We speculate that the reason is due to the large
difference in Ωf from one n to another. Moreover we found a correlation between the number of
iterations and the mean valid agents found in Ωf with very good accuracy. As mentioned before,
the classic PSO for n = 3 behaves differently from all the other n and we do not consider it in this
analysis. The correlation and the statistic results are presented in Figure 5.21 and Table 5.11.

54

Table 5.10: Mean number of iterations multiplied by the mean number of valid agent,
i.e., Θ. Percentage (%) and result for 1 < D < 6 for all n all scenarios compared to
classic PSO

Θ improvement (%) from PSO Θ

D D

n scenario 2 3 4 5 1 2 3 4 5

I -90.58 -92.98 -90.38 -88.96 3763.90 354.57 264.29 362.21 415.49
II -89.90 -91.78 -91.04 -88.96 3408.08 344.15 280.25 305.51 376.38
III -90.56 -92.06 -91.22 -93.53 5894.00 556.19 467.74 517.65 381.53

3

Mean Improvement(%) -90.35 -92.27 -90.88 -90.48 4355.33 418.30 337.43 395.13 391.13

I -66.70 -75.99 -64.18 -66.67 493.84 164.47 118.58 176.92 164.58
II -85.39 -78.53 -86.78 -79.94 732.73 107.06 157.34 96.88 146.99
III -57.24 -69.43 -66.75 -78.24 1093.46 467.60 334.29 363.53 237.89

4

Mean Improvement(%) -69.77 -74.65 -72.57 -74.95 773.34 246.38 203.40 212.44 183.15

I -61.75 -54.58 -67.91 -86.92 303.81 116.21 137.98 97.49 39.73
II -56.62 -69.98 -89.01 -80.64 421.96 183.07 126.66 46.39 81.69
III -43.40 -46.47 -50.26 -42.38 447.51 253.29 239.54 222.60 257.88

5

Mean Improvement(%) -53.92 -57.01 -69.06 -69.98 391.09 184.19 168.06 122.16 126.43

I -8.38 -23.52 -44.30 -32.88 133.79 122.57 102.32 74.51 89.80
II -72.70 -66.31 -74.76 -78.65 237.60 64.87 80.04 59.96 50.73
III -53.19 -67.09 -72.75 -71.24 372.05 174.14 122.46 101.39 107.02

6

Mean Improvement(%) -44.76 -52.31 -63.94 -60.92 247.81 120.53 101.61 78.62 82.51

(a) (b) (c)

Figure 5.21: Correlation for Iteration by Valid Agent . 1 < D < 6 , n = 3, 4, 5, 6 for
scenario I scenario II and scenario III,(a),(b),(c) respectively.

Table 5.11: Correlation coefficient and result p-value for Iteration Valid Agent Corre-
lation for all n all scenarios

Scenario I II III

n correlation coefficient p-value correlation coefficient p-value correlation coefficient p-value

3 0.10 0.90 -0.05 0.95 -0.76 0.24

4 0.88 0.05 0.87 0.06 0.62 0.27

5 0.75 0.15 0.92 0.02 -0.64 0.25

6 0.28 0.64 0.76 0.14 0.88 0.05

There is large difference in performance for various choices of n but not a large difference in
the results between the chosen D in each n. To choose D for each n, we take into consideration

55

also the performance improvement of the RA-PSO. Figure 5.22 presents the improvement in NCEI
with regards to the improvement of Φ∗ for all n.

(a) (b)

(c) (d)

Figure 5.22: Improvement in Θ with regards to improvement in Φ∗ for 1 < D < 6, for
n = 3, 4, 5, 6 in (a), (b), (c) and (d), respectively.

As mentioned before, we seek for D that provides the best performance both in Ωf and Θ.
From Figure 5.22, we can choose D for each n by its performance in both Θ and Φ∗. For n = 3 we
choose D = 2, although the improvement in Θ is better for D = 3 but we prefer the improvement
in Φ∗. For n = 4, it seems that D = 5 presents the best improvement. However, large variation
on D = 5 between the different scenarios can be seen. D = 2 shows lower variation in the results
for all the scenarios and the improvement differences in Θ is lower than 5% and in Φ∗ is lower
than 1%. We choose D = 2 for n = 4.

For n = 5, 6, D = 2 and D = 3 show the best results with small variance in the improvement
in both Θ and Φ∗. The performance of the RA-PSO with n = 5 for D = 2, 3 is very low (lower
than 2%) while not show difference in the result for Θ. For n = 5, we choose D = 2. Although,
when n = 6 the performance in Φ∗ is worse in 2%. For n = 6 we choose D = 2 and give larger
significance to the Φ∗.

5.5 Near-optimal robot configuration for all scenarios

This section presents a near-optimal robot configuration for all scenarios following the results of
the previous sections. We compare between robots with different n with D = 2 so that we can
choose the near-optimal robot to perform the tested tasks.

Figure 5.23 presents the results for scenario I for all the objective function components. In this
scenario, n = 5 achieves a better score of 1% than n = 6. Furthermore, n = 4 gets 9% worse

56

results compared to n = 5 in in the total score Φ∗. For f(Φ), robots with n = 4 track the path
better by 2(mm) with n = 5 and by 5(mm) in E(Φ). In conclusion for scenario I, we prefer to
choose a robot with n = 4 over a robot with n = 5. The difference between n = 4 to n = 3 in
scenario I is lower than 1% in all testes parameters. Taking all this in consideration for scenario I,
we choose a robot with n = 3. Figure 5.24 presents the chosen robot from that score the best in
Φ∗ from all the 30 repetitions.

(a) (b) (c)

Figure 5.23: Fitness (a) Φ∗, (b) f(Φ) and (c) E(Φ) by n = 3, 4, 5, 6 for scenario I and
D = 2.

Figure 5.24: Proposed robot configuration with n = 3 for scenario I.

Figure 5.25 presents the mean results over 30 repetitions for all n with D = 2. It seems that
the ability to track the path increases with regards to n. A robot with higher n can track the path
better. The difference between a robot with n = 5 to a robot with n = 6 is lower than 3% in
f(Φ) and lower by 2% in E(Φ). Due to the difficulty of this path scenario, we propose the best
configuration to be with n = 5. In this scenario, we also want the robot to track the orientation of
the hand movement. This, therefore, adds complexity to the robot to track P . Figure 5.26 presents
the chosen robot configuration out of 30 repetitions to perform scenario II path.

(a) (b) (c)

Figure 5.25: Fitness (a) Φ∗, (b) f(Φ) and (c) E(Φ) by n = 3, 4, 5, 6 for scenario II and
D = 2.

57

Figure 5.26: Proposed robot configuration with n = 3 for scenario II.

Figure 5.27 presents the results for all tested parameters with D = 2 with regard to n for
scenario III. Clearly, the ability to track the path increases with n. Although the difference between
n = 5 to n = 6 is 2%, it means that n = 6 is able to track the path better by 2(mm). For E(Φ),
the difference between n = 5 to n = 6 is also 2(mm). For this scenario, there is no added value
for n = 6 over n = 5. The difference between n = 5 to n = 4 is more significant: 7%, 6.6% and
6.6% for Φ∗, f(Φ) and E(Φ), respectively. This scenario represents the movement in a cluttered
environment and a robots ability to track P . Hence, keeping a low E(Φ) is very important in order
to perform the dilution task and move inside the tree canopy. Therefore, we choose n = 5 for
this scenario as seen in Figure 5.28. Finally, all robot configuration results and DH parameters are
summarized in Table 5.12.

(a) (b) (c)

Figure 5.27: Fitness (a) Φ∗, (b) f(Φ) and (c) E(Φ) by n = 3, 4, 5, 6 for scenario III and
D = 2.

Figure 5.28: Proposed robot configuration with n = 3 for scenario III.

5.6 Robot arm demonstration

This section demonstrates how any off-the-shelf robot can perform the planned path to its best
ability and how the path can be fitted to the robot’s dimensions. We use the 7-DOF Kinova gen3
arm for this demonstration. As mentioned in section 3, the path P can be scaled to fit the desired
robot length and environment properties. The total length of the Kinova gen3 is 1, 187 (mm)

58

Table 5.12: Description of the optimal robotic arms

Sc. n Φ∗ f(Φ) E(Φ) i αi ai di

I 3 0.43 m 17.59 mm 33.23 mm

0 0.515 0 0
1 -1.57 0.11 0
2 -0.27 0.5 0

EE -1.57 0 0.1

II 5 0.83 m 35.83 mm 58.32 mm

0 −1.66 0 0
1 −0.10 0.09 0.31
2 0.86 0 0
3 −0.20 0.28 0
4 0.66 0 0

EE −0.2 0 0.1

III 5 1.63 m 72.91 mm 53.79 mm

0 0 0 0
1 −1.57 0.27 0
2 −1.10 0 0
3 00.49 0.33 0
4 1.51 0 0

EE 1.57 0 0.1

while the arm length of the human demonstrator is 700 (mm). Therefore, the recorded path is
scaled up by 1.6 in order to determinate the use of f(Φ) on the Kinova robot. The scaled path
and placement of the Kinova robot for all scenarios is presented in Figure 5.29. Kinova Forword
kinematics parameter were taken from the official Kinova specification manual.

(a) (b) (c)

Figure 5.29: Path P scaled up by 1.6 for scenarios (a) I, (b) II and (c) III.

Finlay, we solve equation (3.7) for the Kinova configuration. Figure 5.31 presents snap-shots
of the Kinova robot performing all scaled up scenarios in Gazebo-ROS simulation. Table ??
presents the fitness scores of the Kinova performing P for all the tested scenarios. Kinova gen3
arm is a 7-DOF robot which means that our algorithm is not limited for only up to 6 DOF robot
configurations.

59

(a)

(b)

(c)

Figure 5.30: Kinova gen3 perform the optimal paths for scenarios (a) I, (b) II and (c)
III.

Table 5.13: Kinova performance scores for all scenarios.

Φ∗(m) f(Φ)(mm) E(Φ)(m)

scenario I 1.56 76.6 0.08

scenario II 2.37 87.8 0.21

scenario III 5.50 283.3 0.12

Moreover, we test the Kinova performing scenario III in a mock-up tree built in the laboratory.
While changing the start point of the robot. The results show that the Kinova can interact with the
tree model leaves in order to perform the thinning task successfully.

60

Figure 5.31: Kinova gen3 roll-outs of the optimal path for scenario III with a tree mock-
up on different approach points.

61

6 Conclusions

In this work, we present an approach to find a near-optimal robot configuration and placement in
the world to track a recorded path demonstrated by a human expert. We find that best algorithm to
solve multi-point Inverse Kinematics in terms of computation time is the PSO algorithms. How-
ever, the differences between the meta-heuristic methods for this problem are minor and a different
algorithm will have the same results in this optimization problem.

Furthermore, we find that the best algorithm to solve the robot configuration optimization
problem is the classic PSO algorithm, and suggest a new approach. The RA-PSO, based on the
PSO algorithm, improves computation time and effort. Our new approach can save significant
hardware resources and time while keeping the same results as the classic method. Furthermore,
we have defined a new evaluation index termed Normalized computation effort index that combines
both the convergence iteration and valid particles.

This method was tested on three test cases. Classic pick and place of an object from a conveyor
while avoiding an obstacle; track a welding path while keeping the EE orientation; and the dilution
of a palm trees. The palm tree is a cluttered environment that requires the entire arm to interact
with the obstacles while preforming the path. In order to establish the palm tree canopy as an
cluttered environment with static and elastic obstacle, we modeled the mechanical behavior of the
palm tree leaf.

Finally, for each test case we compare the different DOF robots performance and suggest a
near-optimal robot configuration to preform each of the tasks. Moreover, to test the movement of
the robot in the cluttered environment, we rolled-out the recorded path with the Kinova robot in a
scaled model of a palm tree canopy. We placed the robot in 4 different positions associated with
the tree and the robot moved and pushed the tree leaves in order to preform the task. Results show
that this method is not suitable to find both the robot orientation and position in high accuracy.
If the weight of the orientation is higher than 0.3, the robot cannot sufficiently track the position
accurately in order to avoid obstacles or to interact with the environment.

Future work could focus on timing the weights along the path to mark what is more important
according to the task: to keep the EE orientation or to keep the link of the robot in a specific
pose. Moreover, a new path planner can be modified to teach the robot to use its all body links
to interact with the environment.Furthermore, the dynamic leaf model can be used to determine

62

torque magnitudes that are required from the actuators in order to push the tree leaf. Moreover,
we can recorded several paths for the same task and suggest the near- optimal robot to perform all
paths.

63

References

[1] M. Cefalo, G. Oriolo, and M. Vendittelli, “Planning safe cyclic motions under repetitive
task constraints,” in IEEE International Conference on Robotics and Automation, 2013, pp.
3807–3812.

[2] H. M. Do, C. Park, and J. H. Kyung, “Dual arm robot for packaging and assembling of it
products,” in IEEE International Conference on Automation Science and Engineering, 2012,
pp. 1067–1070.

[3] M. Beschi, S. Mutti, G. Nicola, M. Faroni, P. Magnoni, E. Villagrossi, and N. Pedrocchi,
“Optimal robot motion planning of redundant robots in machining and additive manufactur-
ing applications,” Electronics, vol. 8, p. 1437, Dec 2019.

[4] P. Chutima, “A comprehensive review of robotic assembly line balancing problem,” J. of

Intelligent Manuf., vol. 8, pp. 1572–8145, 2020.

[5] V. Bloch, A. Degani, and A. Bechar, “A methodology of orchard architecture design for an
optimal harvesting robot,” Biosystems Engineering, vol. 166, pp. 126–137, 2018.

[6] M. Perrollaz, S. Khorbotly, A. Cool, J. Yoder, and E. Baumgartner, “Teachless teach-repeat:
Toward vision-based programming of industrial robots,” in IEEE Inter. Conf. on Rob. &

Auto., 2012, pp. 409–414.

[7] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd Edition,
1968.

[8] L. Kavraki, M. Kolountzakis, and J.-C. Latombe, “Analysis of probabilistic roadmaps for
path planning,” IEEE Transactions on Robotics and Automation, vol. 14, no. 1, pp. 166–171,
1998.

[9] T. Horsch, F. Schwarz, and H. Tolle, “Motion planning with many degrees of freedom-
random reflections at c-space obstacles,” in Proceedings of the 1994 IEEE International

Conference on Robotics and Automation, 1994, pp. 3318–3323 vol.4.

64

[10] L. E. Kavraki, J.-C. Latombe, R. Motwani, and P. Raghavan, “Random-
ized query processing in robot path planning,” Journal of Computer and

System Sciences, vol. 57, no. 1, pp. 50–60, 1998. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0022000098915781

[11] M. R. Dogar and S. S. Srinivasa, “Push-grasping with dexterous hands: Mechanics and a
method,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems,
2010, pp. 2123–2130.

[12] J. Denavit and R. Hartenberg, “A kinematic notation for lower-pair mechanisms based on
matrices,” Journal of Applied Mechanics, vol. 77, pp. 215–221, 1995.

[13] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in International Conference on

Neural Networks, vol. 4, 1995, pp. 1942–1948.

[14] Shicai Shi, Xiaohui Gao, Zongwu Xie, Fenglei Ni, Hong Liu, E. Kraemer, G. Hirzinger, and
S. C. Shi, “Development of reconfigurable space robot arm,” in International Symposium on

Systems and Control in Aerospace and Astronautics, 2006, pp. 6 pp.–143.

[15] R. Vijaykumar, K. Waldron, and M. Tsai, “Geometric optimization of serial chain manipu-
lator structures for working volume and dexterity,” Int. Journal of Robotics Research, vol. 5,
no. 2, pp. 91–103, 1986.

[16] T. S. Sarosh H. Patel, “Optimal design of threelink planar manipulators using grashof’s cri-
terion,” IGI Global, 2012.

[17] A. Zeiaee, R. Soltani-Zarrin, R. Langari, and R. Tafreshi, “Kinematic design optimiza-
tion of an eight degree-of-freedom upper-limb exoskeleton,” Robotica, vol. 37, no. 12, p.
2073–2086, 2019.

[18] W. S. You, Y. Lee, G. Kang, H. Oh, J. Seo, and H. Choi, “Kinematic design optimization for
anthropomorphic robot hand based on interactivity of fingers,” Intelligent Service Robotics,
pp. 1–12, 04 2019.

[19] M. Ceccarelli and C. Lanni, “A multi-objective optimum design of gen-
eral 3r manipulators for prescribed workspace limits,” Mechanism and Ma-

chine Theory, vol. 39, no. 2, pp. 119–132, 2004. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0094114X03001095

[20] G. C. M. and G. M., “The Synthesis of Manipulators with Prescribed Workspace,” Journal

of Mechanical Design, vol. 113, no. 4, pp. 451–455, 12 1991.

65

[21] B. M. J., “A New Method of Constrained Optimization and a Comparison With Other
Methods,” The Computer Journal, vol. 8, no. 1, pp. 42–52, 04 1965. [Online]. Available:
https://doi.org/10.1093/comjnl/8.1.42

[22] O. Ma and J. Angeles, “Optimum design of manipulators under dynamic isotropy condi-
tions,” pp. 470–475 vol.1, 1993.

[23] M. O. and A. J., “The concept of dynamic isotropy and its applications to inverse kinematics
and trajectory planning,” pp. 481–486 vol.1, 1990.

[24] W. Jun and W. L. Y. Zheng, “A new method for optimum design of parallel manipulator
based on kinematics and dynamics,” Nonlinear Dynamics, vol. 61, pp. 717–727, 09 2010.

[25] K. Abdel-Malek and W. Yu, “Design optimization of robot grippers using teaching-learning-
based optimization algorithm,” International Journal of Robotics and Automation, 2004.

[26] J.-Y. Park, P.-H. Chang, and J.-Y. Yang, “Task-oriented design of robot kinematics using the
grid method,” Advanced Robotics, vol. 17, no. 9, pp. 879–907, 2003. [Online]. Available:
https://doi.org/10.1163/156855303770558679

[27] G. Yang and I.-M. Chen, “Task-based optimization of modular robot con-
figurations: minimized degree-of-freedom approach,” Mechanism and Ma-

chine Theory, vol. 35, no. 4, pp. 517–540, 2000. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0094114X9900021X

[28] M. J. H. Lum, J. Rosen, M. N. Sinanan, and Hannaford B, “Kinematic optimization of a
spherical mechanism for a minimally invasive surgical robot,” in IEEE Int. Conf. on Robotics

and Automation, vol. 1, 2004, pp. 829–834.

[29] A. Kuntz, C. Bowen, C. Baykal, A. W. Mahoney, P. L. Anderson, F. Maldonado, R. J.
Webster, and R. Alterovitz, “Kinematic design optimization of a parallel surgical robot to
maximize anatomical visibility via motion planning,” in IEEE International Conference on

Robotics and Automation (ICRA), 2018, pp. 926–933.

[30] A. W. Mahoney, P. L. Anderson, P. J. Swaney, F. Maldonado, and R. J. Webster, “Reconfig-
urable parallel continuum robots for incisionless surgery,” in 2016 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2016, pp. 4330–4336.

[31] J. Burgner, H. B. Gilbert, and R. J. Webster, “On the computational design of concentric tube
robots: Incorporating volume-based objectives,” in 2013 IEEE International Conference on

Robotics and Automation, 2013, pp. 1193–1198.

66

[32] M. Feng, X. Jin, W. Tong, X. Guo, J. Zhao, and Y. Fu, “Pose optimization
and port placement for robot-assisted minimally invasive surgery in cholecystectomy,”
The International Journal of Medical Robotics and Computer Assisted Surgery,
vol. 13, no. 4, p. e1810, 2017, e1810 RCS-16-0140.R2. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/rcs.1810

[33] S. Patel and T. Sobh, “Task based synthesis of serial manipulators,” Journal of Advanced

Research, vol. 6, no. 3, pp. 479 – 492, 2015.

[34] D. P. Garg and M. Kumar, “Optimization techniques applied to multiple manip-
ulators for path planning and torque minimization,” Engineering Applications of

Artificial Intelligence, vol. 15, no. 3, pp. 241–252, 2002. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0952197602000672

[35] M. D.C. and M. M.K., “Planning of robot trajectories with genetic algorithms,” pp. 223–228,
1999.

[36] E. Solteiro Pires and J. Tenreiro Machado, “A trajectory planner for manipulators using ge-
netic algorithms,” pp. 163–168, 1999.

[37] A. J. Scarfe, R. C. Flemmer, H. H. Bakker, and C. L. Flemmer, “Development
of an autonomous kiwifruit picking robot,” in 2009 4th International Confer-

ence on Autonomous Robots and Agents, 2009, pp. 380–384. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/4804023

[38] E. Van Henten, D. Van’t Slot, C. Hol, and L. Van Willigenburg, “Optimal
manipulator design for a cucumber harvesting robot,” Computers and Electron-

ics in Agriculture, vol. 65, no. 2, pp. 247–257, 2009. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0168169908002238

[39] N. Vahrenkamp, T. Asfour, G. Metta, G. Sandini, and R. Dillmann, “Manipulability analy-
sis,” in IEEE-RAS International Conference on Humanoid Robots, 2012, pp. 568–573.

[40] L. Stocco, S. E. Salcudean, and F. Sassani, “Fast constrained global minimax optimization
of robot parameters,” Robotica, vol. 16, no. 6, p. 595–605, 1998.

[41] J. Rastegar and B. Fardanesh, “Manipulation workspace analysis using the monte carlo
method,” Mechanism and Machine Theory, vol. 25, no. 2, pp. 233 – 239, 1990.

[42] B. Paden and S. Sastry, “Optimal kinematic design of 6r manipulators,” Int. Journal of

Robotics Research, vol. 7, no. 2, pp. 43–61, 1988.

67

[43] M. Stock and K. Miller, “Optimal kinematic design of spatial parallel manipulators: Appli-
cation to linear delta robot,” Journal of Mechanical Design, vol. 125, 06 2003.

[44] Z. B. S. Kucuk, “Robot workspace optimization based on a novel local and global perfor-
mance indices,” IEEE ISIE, pp. 20–23, 2005.

[45] C. Giladi and A. Sintov, “Manifold learning for efficient gravitational search algorithm,”
Information Sciences, vol. 517, pp. 18 – 36, 2020.

[46] S. Khatami and F. Sassani, “Isotropic design optimization of robotic manipulators using a
genetic algorithm method,” in IEEE Internatinal Symposium on Intelligent Control, 2002,
pp. 562–567.

[47] J. Bryson, X. Jin, and S. Agrawal, “Optimal design of cable-driven manipulators using parti-
cle swarm optimization,” ASME. J. Mechanisms Robotics, vol. 8, no. 4, 2016.

[48] L. Smith, N. Dhawan, M. Zhang, P. Abbeel, and S. Levine, “Avid: Learning multi-stage tasks
via pixel-level translation of human videos,” in Robotics: Science and Systems (RSS), 2020.

[49] Y. Zhu, Z. Wang, J. Merel, A. Rusu, T. Erez, S. Cabi, S. Tunyasuvunakool, J. Kramár, R. Had-
sell, N. de Freitas, and N. Heess, “Reinforcement and imitation learning for diverse visuo-
motor skills,” in Proceedings of Robotics: Science and Systems, 2018.

[50] N. García, J. Rosell, and R. Suárez, “Motion planning by demonstration with human-likeness
evaluation for dual-arm robots,” IEEE Transactions on Systems, Man, and Cybernetics: Sys-

tems, vol. 49, no. 11, pp. 2298–2307, 2019.

[51] A. Kapusta and C. C. Kemp, “Optimization of robot configurations for assistive tasks,” Geor-

gia Tech Library, 2016.

[52] A. Perez-Gracia and J. M. McCarthy, “Kinematic synthesis of spatial serial chains using
clifford algebra exponentials,” Proceedings of the Institution of Mechanical Engineers, Part

C: Journal of Mechanical Engineering Science, vol. 220, no. 7, pp. 953–968, 2006.

[53] S. Shirafuji and J. Ota, “Kinematic synthesis of a serial robotic manipulator by using gen-
eralized differential inverse kinematics,” IEEE Transactions on Robotics, vol. 35, no. 4, pp.
1047–1054, 2019.

[54] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to Robotic Manipulation,
1st ed. CRC Press, Mar. 1994.

68

[55] T. Dokeroglu, E. Sevinc, T. Kucukyilmaz, and A. Cosar, “A survey on new generation meta-
heuristic algorithms,” Computers & Industrial Engineering, vol. 137, p. 106040, 2019.

69

תקציר

רובאתומבצעותייצורבקוויממוקמותהןלייצור.מודרניתלאוטומציההבסיסהןרובוטיותזרועות
גבוההיכולתבעליאלורובוטיםזאת,עםואריזה.ריתוךצביעה,שבבי,עיבודהרכבה,כגוןהמשימות

ריתוךאואחריעודיבמקוםומיקוםממסועאיסוףכגוןוחזרתיותפשוטותלמשימותמורדיםכללבדרך
גדוליםמשאביםגוזלאחתספציפיתמשימהעבוראופטימלירובוטעיצובשני,מצדמסלול.אותושל
התנגשותללאנתיביםמחפשותמסלוללתכנוןהנפוצותהשיטותכן,עליתרועלויות.הנדסיזמןשל

חפציםלפנותישבהןעמוסותבסביבותמסלולשימצאוסבירלאזאת,עםהרובוטיות.הזרועותעבור
ורקאךהסביבהעםאינטראקציהיוצרותכללבדרךרובוטיותזרועותכן,כמולמטרה.להגיעמנתעל

באמצעות אביזר הקצה שלהן.

מדגיםחיקויעלהמבוססתמוגדרתמשימהלביצועאופטימליתהרובוטתצורתאתמחפשתזועבודה
רובוטרובוט.שלהמיקוםואתהרובוטקינמטיקתמשתנהאתמחפשתזושיטהמכך,יתרהאנושי.

במהלךביותרהטובהדיוקאתומספקהמינימליהחופשדרגותמספראתשמשלבזההואאופטימלי
להשלמתהנדרשתהאוטומציהעםניתנתהאופטימליתהקינמטיקהבנוסף,המשימה.ביצוע

לביצועהרובוטשלהמנועיםערכיאתלמצואכדימטה-יוריסטיתבשיטהמחושבהנתיבהמשימה.

משימותלביצועוקישורים),(מפרקיםזרוע-רובוטהמכלולאתבחשבוןלוקחתזוגישההמשימה.
לרובוטמסלוללתכנוןגםלשמשיכולההמוצעתהשיטהממכשולים.להימנעכדיאועמוסהבסביבה

בעייתאתלפתורביותרהמתאיםהאלגוריתםאתלזהותכדיהשוואתיניתוחמספקיםאנוקיים.
מאודחיפושמרחבעללהתגברוכדיכןעליתרוהשוו.נבדקושונותידועותשיטותזו.אופטימיזציה

שלעיצובאתלמצואיכולההחדשההשיטהחדש.אלגוריתםמוצעהבעיה,שלרציףולאלינארילא
עםואףהסטנדרטיתהשיטהכמושהוגדרוהפרמטריםלפיתוצאהאותהאתמקבלאשררובוט

מאמץ חישוב נמוך יותר.

חפץאיסוףהואהראשוןשונים.מקריםשלושהבוחניםאנושלנוהשיטהאתולבססלבדוקכדי
ובוריתוךמשימתביצוערובוטהואהשניהתרחישממכשול,הימנעותתוךבקופסאוהנחתוממסוע

בתוךשנערובוטהואהאחרוןהתרחישהאדם.ידתנועתשלוהכיווןהמיקוםאחרלעקובדורשיםאנו
עמוסהסביבהמייצגתהדקלעץצמרתהתמרים.דילולמשימתאתלבצעמנתעלדקלעץצמרת

כלעםהעץשלהעליםעםבאינטראקציהלהיותהרובוטעלהמשימהאתלבצעמנתעלבמכשולים.
חלקיו ולא רק עם אביזר הקצה.

אוניברסיטת תל אביב
הפקולטה להנדסה ע"ש איבי ואלדר פליישמן

בית הספר לתארים מתקדמים ע"ש זנדמן סליינר

אופטימיזצית קונפיגורציה של זרוע רובוטית המבצעת

משימות בסביבות צפופות מכשולים

חיבור זה הוגש כעבודת מחקר לקראת התואר "מוסמך אוניברסיטה" בהנדסה מכנית

על ידי

ענבר מאיר

העבודה נעשתה בבית הספר להנדסה מכנית בהנחיית ד"ר אבישי סינטוב מטעם המחלקה להנדסה

מכנית ופרופ' אביטל בכר המכון להנדסה חקלאית מרכז ולקני

אב תשפ"ב

