
TEL AVIV UNIVERSITY
The Iby and Aladar Fleischman Faculty of Engineering

The Zandman-Slaner School of Graduate Studies

LEARNING TO THROW WITH A HANDFUL OF
SAMPLES USING DECISION TRANSFORMERS

A thesis submitted toward the degree of

Master of Science in Engineering

by

Maxim Monastirsky

October 2022



TEL AVIV UNIVERSITY
The Iby and Aladar Fleischman Faculty of Engineering

The Zandman-Slaner School of Graduate Studies

LEARNING TO THROW WITH A HANDFUL OF
SAMPLES USING DECISION TRANSFORMERS

A thesis submitted toward the degree of

Master of Science in Engineering

by

Maxim Monastirsky

This research was carried out at Tel Aviv University

in the School of Mechanical Engineering

Faculty of Engineering

under the supervision of Dr. Avishai Sintov

October 2022



Acknowledgments

First of all I would like to acknowledge and give my warmest thanks to Dr. Avishai Sintov,
for your support and guidance along the way, for your pursue of the new and unknown.
Your enabling approach is essential for true innovation.

I would also like to thank my dearest friends and co-workers: Inbar Ben-David, Os-
her Azulay, Nadav Kahanowich, Anton Gurevich, Eran Bamani, Itamar Mishani, Alon
Mizrahi, Nimrod Curtis and Alon Laron, for being there in hard times and good times,
providing different perspectives and a laugh or two.

Thanks to my parents Natalia and Evgeny Monastirsky, for providing me the tools I
use today and supporting me along the way. Yael Bar-Eli, my life partner, for always being
there. And lastly, I want to thank my cat Tubi, for loving me regardless.



Abstract

Throwing objects by a robot extends its reach and has many industrial applications; provid-
ing better efficiency to many tasks such as packaging in warehouses, object transfer, con-
veyor belt management and recycling. While analytical models can provide efficient per-
formance, they require accurate estimation of system parameters. Reinforcement Learning
(RL) algorithms can provide an accurate throwing policy without prior knowledge. How-
ever, they require an extensive amount of real world samples which may be time consum-
ing and, most importantly, pose danger. Training in simulation, on the other hand, would
most likely result in poor performance on the real robot.

In this work, we explore the use of Decision Transformers (DT) and their ability to
transfer from a simulation-based policy into the real-world. Contrary to RL, we re-frame
the problem as sequence modelling and train a DT by supervised learning. The DT is
trained off-line on data collected from a far-from-reality simulation through random ac-
tions without any prior knowledge on how to throw. Then, the DT is fine-tuned on an
handful (∼ 5) of real throws. Results on various objects show accurate throws reaching an
error of approximately 4cm. Also, the DT can extrapolate and accurately throw to goals
that are out-of-distribution to the training data. We additionally show that few expert throw
samples, and no pre-training in simulation, are sufficient for training an accurate policy.

The work in this thesis was submitted for publication in the IEEE Robotics and
Automation Letters, September 2022.



Table of Contents

List of Figures iii

List of Tables v

1: Introduction 1

2: Related Work 4

2.1 Throwing with robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Sim-to-real . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Transformers and attention in Reinforcement Learning and Robotics. . . . 6

3: Background 7

3.1 Reinforcement Learning (RL) . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4: Method Overview 12

4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Data Collection and Augmentation . . . . . . . . . . . . . . . . . . . . . 13

4.3 Decision Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.4 Sim2Real . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

i



5: Experiments 18

5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.4 Real Robot Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6: Conclusions and Future Work 27

References 28

ii



List of Figures

1.1 (Top row) A simulated robotic arm is used to collect throw trajectories
acquired by random motions and arbitrary object release time. Four ran-
dom throws are shown where the object is marked with a yellow circle for
better visibility. (Bottom) A Decision Transformer (DT), trained off-line
with the simulated data, is shown to be able to extrapolate and general-
ize to out-of-distribution goals such that a real robot is able to accurately
throw to desired ones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Transformer Architecture [44]. The left and right sides are the encoder
and decoder, containing self and cross attentions respectively. . . . . . . . 11

3.2 Generative Pre-trained Transformer (GPT) Architecture. . . . . . . . . . 11

4.1 Illustration of the robot with the object and goal. . . . . . . . . . . . . . . 13

4.2 Illustration of the Decision Transformer pipeline. In a given timestep, the
DT is inputted with previous rewards-to-go, states, actions and current
reward-to-go and state. It then predicts the next action to be taken in order
to achieve the desired reward. After the predicted action is executed by the
robot, we observe the next state and calculate the new reward-to-go based
on the received reward. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.1 Deployment example of the trained DT on the simulated robot for throw-
ing the object to a desired target. . . . . . . . . . . . . . . . . . . . . . . 21

5.2 Throw accuracy with regards to the number of training trajectories and
HER augmentation parameter Kher. . . . . . . . . . . . . . . . . . . . . . 21

iii



5.3 Distribution of throws in the training dataset (black) compared to suc-
cessful test throws (red). Despite the sparsity of throws for dg > 50cm

in the training dataset, DT manages to make accurate throws to out-of-
distribution goals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.4 Number of real throws required for fine-tuning the DT model. . . . . . . 23

5.5 Throw accuracy with regards to the distance of the goal dg for (blue) sim-
ulated robot, (green) real robot with non fine-tuned DT and (orange) real
robot with fine-tuned DT. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.6 Seven test objects including (a) cuboid (with reflective markers, (b) squeeze
ball, (c) cylinder, (d) box (e) sand ball, (f) copper coil and (g) pencil. . . . 25

5.7 Snapshots of four throws (from top to bottom): squeeze ball (dg = 180cm),
pencil (dg = 180cm), cylinder (dg = 140cm) and box (dg = 90cm). Objects
are marked with a yellow circle for better visualization. . . . . . . . . . . 26

iv



List of Tables

5.1 Baseline comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Throwing success rate out of 10 throws for seven test objects. . . . . . . . 25

v



1 Introduction

The ability of a robot to accurately throw an object to a desired target can provide better
efficiency to many tasks such as packaging in warehouses, object transfer, conveyor belt
management and recycling [33]. By throwing an object, the robot utilizes its dynamics
for extending its reach. The robot can place objects in boxes or bins positioned in farther
region without the need to physically reach them.

The throwing problem has been addressed in several analytical approaches where sys-
tem models and parameter tuning are required [41, 39]. In contrary, not much work has
been carried out using machine learning approaches. Nevertheless, recent work combined
a physics-engine simulation with a regression network trained by real world throws [49].
While the method achieved results outperforming human throws, it requires an extensive
amount of real world throws and some prior how to throw. Similarly, Reinforcement
Learning (RL) applications for throwing requires a significant amount of real-world sam-
ples in order to demonstrate sufficient performance. Consequently, only few demonstrated
such capabilities in limited scenarios [20].

RL has been successful in many complex simulated tasks including Atari video games
[26] and physics-engine environments [24, 9] where the data is acquired at a lower cost
[50]. However, training RL policies on real robots is a tedious and time consuming task
[25]. Hence, the lack of extensive RL work on the object-throwing problem can be ex-
plained by the logistic requirement for a large amount of real throws and a reset mecha-
nism to facilitate the collection. The robot may be required to work for a very long time.
More important, the robot has no prior on how to throw and random actions may pose dan-
ger and cause damage. Simulation-based learning, on the other hand, provides a safe and
cost-effective way to collect data through interactions with the environment. However,
simulations rarely capture reality and the trained policies are usually poorly transferred
[29].

Classic online RL algorithms require to continuously apply and update the current pol-
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icy on the robot and collect on-policy data. This online setting is usually time consuming
and very sample inefficient. Hence, it may be practical in a simulation environment, but
many real robotic applications do not have the privilege of applying such online train-
ing procedures. On the other hand, offline RL algorithms, such as Deep Q-Learning and
Deep Deterministic Policy Gradient (DDPG) [24, 1], require data that is correlated to the
distribution of the current policy and are unable to extrapolate to new out-of-distribution
scenarios [10].

In recent years, significant advancements in natural language processing and vision
have been credited to the development of the Transformer architecture [44, 8]. In particu-
lar, an autoregressive model termed Generative Pre-trained Transformer (GPT) [31] is re-
sponsible for significant breakthrough in text-to-image [32] and language models [7]. The
Transformers were recently taken to the world of RL in the form of Decision Transform-

ers (DT) [5]. In DT, RL is considered as sequence modeling problem while completely
eliminating the need for bootstrapping for long term credit assignment typically done in
temporal-difference learning. Hence, a policy can be learned from offline and off-policy
examples. Experiments in simulated environments have shown some capability for out-of-
distribution learning [32]. Yet and to the best of the authors’ knowledge, DT has not been
evaluated on real world robots and sim-to-real transfer.

In this work, we investigate the use of DT for multi-goal object throwing with a robotic
arm and its ability to reduce the required number of real-world samples. In particular, we
are interested in investigating the sim-to-real ability of DT to generalize from a simulation-
based model to the real world. Unlike prior work, no prior knowledge on how to throw nor
a particular object release time are given to the simulation. Consequently, the sequence of
actions for a throw motion is fully learned and is not of constant length. In addition, the
simulation is not required to be tuned to the dynamic parameters of the real system and
arbitrary values can be used. By using a simulation, the model is able to explore various
motions without any risk. We also observe the augmentation of the simulated trajectories
for data efficiency by using the Hindsight Experience Replay (HER) [2]. Then, only a
handful of off-line recorded real throws is required in order to fine-tune the model yielding
accurate real-world performance. The training data recorded off-line from simulation via
random actions is shown to be of a short range distribution. However, the model exhibits
ability, both in simulation and real world, to accurately throw to out-of distribution goals.

To summarize, this work shows that a real robotic arm can successfully learn a dynam-
ically complex task by adopting the DT architecture while dramatically improving sample
efficiency. Also, no visual perception is used in the process and control is based solely on
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Figure 1.1: (Top row) A simulated robotic arm is used to collect throw trajecto-
ries acquired by random motions and arbitrary object release time. Four ran-
dom throws are shown where the object is marked with a yellow circle for better
visibility. (Bottom) A Decision Transformer (DT), trained off-line with the simu-
lated data, is shown to be able to extrapolate and generalize to out-of-distribution
goals such that a real robot is able to accurately throw to desired ones.

the joint state of the robotic arm. We also introduce the first integration of HER with DT
to exploit arbitrary throws. The results expose the unique abilities of the DT to transfer
from an arbitrary simulation and extrapolate using out-of-distribution training data. This
has implications to other systems beyond the throwing problem. To the best of the author’s
knowledge, this is the first implementation and experimental analysis of sim-to-real with
DT and using DT for the throwing problem.
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2 Related Work

2.1 Throwing with robots

The throwing problem with pure analytical models has been widely addressed [36]. In
[11], torque control was proposed in order to throw a ball with an elastic manipulator. A
different work provided a method to optimize the shape of an end-effector along with a
test-case of planar object throwing [41]. Another work, on the other hand, focused on the
parametrization and motion planning of a throwing motion [39]. However, these require
knowledge of the dynamic properties of the system which are usually difficult to estimate.
As a result, the approaches are not suitable for unstructured environments with various
uncertainties and may exhibit low accuracy.

Not much work has studied the use of modern machine-learning approaches for throw-
ing. Early work used motor primitives and meta-parameters learning with RL [20]. Nev-
ertheless, the method requires some prior understanding of a throwing model and dynamic
parameters. Later work used a deep neural-network to map an image state observation into
a sequence of motor activations [12]. The approach was demonstrated over a ball throw-
ing scenario. In both of these implementations, no actual throwing performance evaluation
was provided.

In a more recent study, a robot has learned to rapidly pick-up and throw objects based
on image observations [49]. The method consists of predicting the release velocity using a
physics-based controller of an ideal ballistic motion. To compensate for the shortcomings
of the physics-based controller, the throwing module includes a regression neural-network
that predicts a residual on top of the estimated release velocity. Hence, the method is based
on a know-how throwing prior and requires a significant amount real-world samples. In
contrast, our proposed method does not require any prior on how to throw and only a
handful of real throws are needed.
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2.2 Reinforcement Learning

Reinforcement Learning (RL) [17] [40] is a type of machine learning that allows agents to
automatically learn how to optimize their behavior given a specific goal. It is concerned
with how agents ought to take actions in an environment in order to maximize some notion
of cumulative reward. This makes it an ideal approach for teaching robots how to perform
tasks in the real world, since they can learn directly from their experience instead of being
explicitly programmed using extensive hand-coded rules or human supervision. RL is used
in robotics to teach robots various tasks in different environments: industrial, domestic and
public environments. Examples of such tasks are grasp and manipulation of objects [21],
usage of different tools and objects to interact with the environments [38], and allowing
robots to navigate and drive [19]. Unfortunately, most RL and robotics tasks require a
large amount of real-world data in order to train the models effectively. This can make
the data quite expensive as it can be difficult, time-consuming and sometimes dangerous
to collect. There is, however, a relatively cheap solution; training an agent in a simulated
environment and transferring it to the real world. But, this solution comes with a big
caveat, which we will discuss in the next section.

2.3 Sim-to-real

Learning a policy solely from a simulation and deploying it to the real world is considered
a hard challenge. Such problem is commonly referred as the Reality Gap or sim-to-real

(simulation to reality). Many approaches have been proposed for bridging the reality gap.
Early approach suggested adding noise to the simulation [14]. More recently, domain ran-
domization was proposed where various properties in an existing simulation are constantly
changed [50]. Similarly, dynamics randomization was proposed to randomly sample dy-
namic properties (e.g., robot link mass, damping and friction) in the simulator during
training [29]. Consequently, the policy is able to adapt to uncertainties that may emerge
when transferring to the real system. Such approach, however, requires full knowledge
of the different dynamic parameters in the model, and can be time-consuming since the
policy must experience a large variance of dynamic possibilities. [47] showed another ap-
proach, by training agents to do the same task in different environments, they were able to
extract task-specific states (like driving dynamics) and domain-specific states (like graph-
ical parameters in the simulation). Then using the task-specific states to perform well in
new domains. Unfortunately, this requires data from a number of different domains, and
in our case of robotic arm, it is not easy as it may require another simulation or another
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robotic arm.

All of the above approaches require the formation of a physics-engine based simulation
that is sufficiently close to the real system and environment. Closing the reality gap is not
easy and collecting real world data is almost always inevitable. In this work, we show that
DT can provide an efficient sim-to-real transfer from a simulation with arbitrary dynamic
parameters.

2.4 Transformers and attention in Reinforcement Learning and Robotics.

Although Transformers have shown great advancements in language and vision in recent
years, yet their impact on RL and Robotics is relatively small. Some work has been done
with combining transformers and attention mechanisms in RL for stabilization and effi-
ciency [28, 48, 35]. However, such combination acts only as an additional mechanisms to
the existing actor-critic framework. In robotics, on the other hand, transformers have been
used in various ways for path-planning [4, 16], imitation [6, 18] and grasping [13]. But, it
is important to note that these examples use the transformers as a stand alone architecture
in a traditional way, designed for a specific task, and are not part of an RL framework.

Lately, a new approach has been taken by recent works, abandoning the actor-critic
framework completely and relying solely on the transformer architecture for the RL prob-
lem. A recent study re-framed the RL problem as a time sequence problem and used the
Decision Transformer (DT) architecture alone to predict actions [5]. In further work, the
transformer was used to model distributions over trajectories followed by beam search as a
planning algorithm to find the optimal trajectory [15]. Recent works in text-to-image field
[32] and natural language processing [7], showed that a transformer can model a wide dis-
tribution of behaviors, enabling better generalization and transfer. This allows the DT to
work well in an offline setting, a task that is traditionally challenging due to error propaga-
tion and value overestimation [23]. Recent RL work demonstrated this [22]. An agent was
taught to play up to 46 Atari games simultaneously at close-to-human performance, using
only one DT model, which was trained off-line. Furthermore, in [34], an agent was taught
to not only play Atari games, but also to caption images, chat, stack blocks with a real
robot arm and much more, using only one model. In [38], a robot was trained to conduct
multiple complex tasks from text commands. Following recent work, the DT framework
is adopted in this work for further study in the context of real-world object throwing and
sim-to-real.
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3 Background

In this chapter, we provide a necessary background in Reinforcement Learning (RL),
Transformers and Attention. In RL, we present the classic framework for discussions
in our work, and provide deeper understanding of the baselines used for comparison. In
Transformers, we present the architecture of classic and modern transformers, as they are
the core of our algorithm.

3.1 Reinforcement Learning (RL)

A system can be described by the tuple (S,A,P,R) where S and A are the state and
action spaces, P = P(st+1|st ,at ,st−1,at−1, . . .) is the transition probability function of
the system, and R(st ,at) is the reward function. A traditional RL algorithm requires
to acquire a policy πθ that produces actions πθ (at|st) that, in turn, produce a trajectory
{s0,a0,r0, . . . ,sT ,aT ,rT}, for at ∈ A, st ∈ S and rt = R(st ,at), that maximizes the ex-
pected reward

J(θ) = Eat∼πθ

[
T

∑
t=0

rt(st ,at)

]
. (3.1)

A policy πθ is usually in the form of neural network with parameters θ .

Policy Gradients (PG). One way to find the optimal policy parameters θ ∗ is to use
Gradient Ascent [40, 46] using the objective’s gradients θt+1 = θt +∇J(θ). It can be
shown that ∇J(θ) is

∇J(θ)=Eπ

[
T

∑
t=0

∇logπθ (at|st)
T

∑
t ′=t

(rt ′ −b)

]
≈ 1

N

N

∑
n=0

(
T

∑
t=0

∇logπθ (at|st)(Q(st ,at)−V (st))

)
.

(3.2)

It can be shown that a baseline b can be subtracted from the reward in order to make
the learning process more efficient. An example of simple baseline is the average reward
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b =
1
M

∑
M
i=0 ri, using this baseline centers the samples around its average reward, and for

every gradient step we increase the probability of approximately 50% of the good samples,
and decrease the probability of the other bad 50% samples. A baseline of average reward
is a good and quick baseline, because it eliminates the bias, but it is not the best, because
it does not reduce the variance of the gradients. A better and more common choice for b

is the value function, defined as V (st) = ∑
T
t ′=t Eπ [r(s′t ,a′t)|(st)]. Q(st ,at) is the expected

future reward Q(st ,at) = ∑
T
t ′=t Eπ [r(s′t ,a′t)|(st ,at)]. The last approximation is conducted

through Monte-Carlo, averaging the gradient over N samples.

The term Q(st ,at)−V (st) is commonly termed the Advantage or Critic (The policy πθ

is called the Actor), and can be written as

A(st ,at) = Q(st ,at)−V (st)≈ r(st ,at)+ γV (st+1)−V (st). (3.3)

Scalar γ ∈ [0,1] is the discount factor, prioritizing actions in the near future. From Eq.
(3.3), it can be seen that in order to evaluate the Critic, we only need to approximate the
Value function. The Value function Vφ is also a neural-network with parameters φ , and is
updated using bootstrapping:

Vφ (st) = r(st ,at)+ γVφ (st+1). (3.4)

Hence, a second objective

J(φ) =
1
2
(r(st ,at)+ γVφ (st+1)−Vφ (st))

2. (3.5)

is to be minimized. This method is guaranteed to converge even when randomly initiated.

Q-Learning and Deterministic Actions. By observing Eq. (3.4), one can similarly
learn to approximate the Q-function according to

Qφ (st ,at) = r(st ,at)+ γEπ

[
Vφ (st+1)

]
≈ r(st ,at)+ γ max

at+1
Qφ (st+1,at+1). (3.6)

and use an implicit policy to get a deterministic action, as follows

at = argmax
at

Qφ (st ,at). (3.7)

This creates a much easier setting, as there is only one neural-network to approximate and
it works well with off-policy samples [45].
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Deep Deterministic Policy Gradients (DDPG). In case of discrete action space, Eq.
(3.7) can easily yield the optimal action, but in case of continuous action space, this is not
an easy task. Lillicrap et al. [24] suggested to approximate the deterministic action at by
using a second neural network at = µπ(st) [24]. The new objective is

J(θ) = E

[
T

∑
t=0

rt(st ,µθ (st))

]
(3.8)

with gradient

∇J(θ) = E

[
T

∑
t=0

∇θ µθ (s)|s=st∇aQ(s,a)|s=st,a=µθ (st)

]
. (3.9)

Eq. (3.9) is derived using the chain rule. The critic objective in this case is

J(φ) =
1
2
(r(st ,at)+ γQφ (st+1,µθ (st+1))−Qφ (st ,at))

2, (3.10)

with gradient

∇J(φ) = (r(st ,at)+ γQφ (st+1,µθ (st+1))−Qφ (st ,at)). (3.11)

We now have two objectives: Eq. (3.8) is the reward expression to be maximized and
(3.10) is the critic error to be minimized. Eq. (3.9) and (3.11) can be approximated using
Monte-Carlo approximation similar to Eq. (3.2). All of the above methods designed to
work in a on-line manner. Meaning, the policy must be constantly applied on the environ-
ment in order to collect more trajectories, which in turn are used to update the policy and
the Q or Value functions. In our work, we compare our performance to this method, as it
is one of the most common approaches for continuous action space problems.

Behaviour Cloning (BC). Contrary to Policy Gradients and Q-Learning methods
discussed above, Behaviour Cloning is a rather simpler method designed to learn a policy
from an expert [30, 42]. A set of trajectories is collected by an expert. A trajectory is
of the form τ∗i = ((s∗0,i,a

∗
0,i), ...,(s

∗
T,i,a∗T,i)), and a policy πθ (a|s) is learned through these

trajectories in a supervised, off-line manner by minimizing the loss

J(π) = Loss(a∗,πθ (a|s)). (3.12)

The loss function is implemented with the Mean Square Error (MSE) function. If an
expert is available during training time, the learned policy πθ (a|s) can be deployed to
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collect more trajectories, and the expert can be used to get feedback by revising the states
in the collected trajectory and obtaining the corresponding actions by the expert. But, this
is not our case as we don’t have en expert in this work. We use this method as additional
baseline for comparison, as it is very similar in nature to our work. BC is both supervised
learning and off-line.

3.2 Transformers

The Transformer, seen in Fig. 3.1, was introduced by Vaswani et al. [44] to efficiently
model sequential data. It consists of an encoder and decoder pair, containing stacked self-
attention and cross-attention layers, respectively, with residual connections. Sequential
data is the input to the transformer in which each element within it is termed a token. Each
token is embedded through a linear layer. Furthermore, positional encoding is then added
to the embedded token to provide information regarding its position in the sequence. The
Transformer inputs m tokens and outputs m tokens preserving input dimensions.

Attention. The embedded tokens are used to obtain the Queries (Q), Keys (K) and
Values (V ), by passing three copies of the same embedded token through three differ-
ent linear layers. One can think of the Queries, Keys and Values analogous to retrieval
systems. Mapping Queries against Keys of different tokens will be associated with how
strongly these tokens are related, and then the value will be returned with correlation to
how strong these tokens are related. The Queries, Keys and Values of all the tokens are
stacked into vectors, and then used to calculate the Attention, as follows

Attention(Q,K,V) = so f tmax(
QKT
√

dk
)V. (3.13)

The division by
√

dk is used for stability of training, Where dk is the embedding dimen-
sion. The attention mechanism allows the transformer to learn the contextual relationships
between the tokens. Multi-Head Attention meaning a number of different attentions are
calculated in parallel, for every attention-head, queries, keys and values are calculated
with different linear layers. Cross-Attention inputs keys and values from the encoder, and
queries from the decoder while Self-Attention inputs Keys, Queries and Values from the
same source (encoder or a decoder). After a new token is generated, it is added to the Out-
puts vector, a vector that is inputted to the decoder as seen in Fig. 3.1. A classic example
for the input sequence is a sentence to be translated to another language. The decoder will
be inputted an empty sequence (As there are no outputs yet), and will output a translated

10



Figure 3.1: Transformer Archi-
tecture [44]. The left and right
sides are the encoder and decoder,
containing self and cross atten-
tions respectively.

Figure 3.2: Generative Pre-
trained Transformer (GPT)
Architecture.

word at a time. Every time a translated word is outputted, it will be added to the Output
sequence.

Generative Pre-trained Transformer (GPT). A GPT architecture [31] later intro-
duced some changes to the original Transformer by utilizing only the decoder part of the
transformer, stacking a number of decoders together, getting rid of the cross-attention
mechanism as well. In addition, the GPT is applying causal masking forcing the Trans-
former to take into account only previous tokens in the sequence instead of the whole
sequence. The outputted token of the GPT is added the the end of the input sequence.
Thus, enabling autoregressive generation.
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4 Method Overview

4.1 Problem Formulation

State. An n degrees-of-freedom robot is given as illustrated in Figure 4.1. Let s ∈ S
be the state of the robot where S ⊂Rn+1. As such, a state s = (θ1, . . . ,θn,θgr) is comprised
of robot actuator angles θ1, . . . ,θn and the binary state of the gripper θgr ∈ {0,1} indicating
closed (1) or open (0). A Markov Decision Process (MDP) is defined by

P(st+1|st) = P(st+1|st ,st−1, ...,s0) (4.1)

where P is a probability distribution function. In other words, a state st captures all
the relevant past information. In our case, a state st only includes current positions while
missing velocity and acceleration information, making the process not MDP. Hence, deter-
mining the next state st+1 may require a sequence of past states. We use this form of state
due to the fact that the Decision Transformer (DT) inherently accesses all the past tokens
(rewards-to-go, states and actions) in a window of size w, allowing the DT to evaluate on
its own motor velocities and accelerations.

Goal. The aim of the robotic arm is to throw a grasped object to a desired goal xgoal ∈
R2. Goal xgoal = (xg,yg) is a position on some horizontal plane in the vicinity of the robot
with respect to its base. Consequently, the throwing distance is given by dg = ∥xgoal∥ and
is an input to the DT. For safety reasons, the throwing direction is determined analytically
by φ = arctan2(xg,yg).

Action. Let at ∈ A be an action of the system at time t where A⊂ Rn+1. Hence, an
action is composed of actuator velocities ω1, . . . ,ωn for the arm, and opening or closing
command agr ∈ [0,1] to the gripper. The gripper is initialized while closed on the object,
i.e., agr = 1. Once condition agr ≤ τ is satisfied for some pre-defined threshold τ > 0, the
gripper opens.
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Figure 4.1: Illustration of the robot with the object and goal.

Reward. A sparse reward function is defined for a robot throw in the form:

R(st ,at) =


1, θgr = 0∧∥xland −xgoal∥ ≤ ρ,

−1, θgr = 0∧∥xland −xgoal∥> ρ,

0, otherwise,

(4.2)

where ρ > 0 and xland is the actual landing position of the object. A throw is considered
successful if the first landing point xland is inside a circle of radius ρ around the goal
position. The robot is penalized if the object did not land in the circle. We note that non-
sparse rewards did not provide sufficient results in preliminary work and as indicated in
[2].

The system at any given time can be described by the tuple (S,A,P,R) where P =

P(st+1|st ,at ,st−1,at−1, . . .) is the transition probability function of the system. A tradi-
tional RL algorithm requires to acquire a trajectory {s0,a0,r0, . . . ,sT ,aT ,rT}, for rt =

R(st ,at), that maximizes the expected reward E
[
∑

T
t=0 rt

]
. In DT, on the other hand, pre-

recorded roll-outs are used for off-line training. Hence, one can only find a trajectory that
produces a desired reward as discussed next.

4.2 Data Collection and Augmentation

Training data is collected from a simulated environment where the kinematics of the
robotic arm are modeled. However, dynamic parameters, such as link inertia and mass,
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are chosen arbitrarily and may be very different from the values of the real robot. We
assume that no prior motion of how to throw exists. Hence, temporally correlated noise is
injected into the actuators of the simulated arm resulting in efficient exploration through
random motion. To generate such noise, the Ornstein-Uhlenbeck process [43] is used in
the form

xk+1 = (µ − xk)θ∆t +σεk
√

∆t (4.3)

where xk is the noise at time-step k, ∆t is the sample time, εk is a normal noise εk ∼ N (0,1)
and, θ , µ and σ are process parameters. At the beginning of each throw trajectory, a
random goal is selected. In addition, a random time-step is chosen for when the gripper
will open and release the object.

In this work, we explore the benefits of data augmentation based on the Hindsight
Experience Replay (HER) [2]. Given a trajectory where the object landed at position xland ,
Kher samples are generated with the same trajectory while their corresponding goals are
randomly picked inside a circle of radius 2ρ around the landing spot xland . For Kher = 0,
we always pick the landing spot as a goal. For Kher > 0, goals with distance [0,ρ] and
(ρ,2ρ] from xland are considered success and miss, respectively. This is done in order to
create a balanced dataset of successful and unsuccessful throws, to diversify the variance
of rewards in the training and to give a clearer insight to the DT regarding the boundary
between successes and misses.

With the above, a recorded trajectory will be of the form

τi = {s0,a0,r0 . . . ,sTi,aTi,rTi} (4.4)

where Ti is the length of the motion and sTi is the state in which the object was released.
Trajectory τi is accompanied with the goal xgoal determined in the augmentation. The
rewards included in the trajectory are updated based on (4.2) and indicate whether the
goal was successfully reached. Finally, a dataset of M trajectories P = {τ1, . . . ,τM} is
obtained for generating DT trajectories and training as discussed next.

4.3 Decision Transformers

DT Architecture. The DT, based on the GPT architecture as disccused in Chapter
3, is illustrated in Figure 4.2. It is inputted with w last time-steps yielding a total of
3w tokens {R̂0,s0,a0, . . . , R̂w,sw,aw} where R̂i is the reward-to-go [5]. Token embedding
is performed with a linear layer for each modality. After the embedding and similar to
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Figure 4.2: Illustration of the Decision Transformer pipeline. In a given timestep,
the DT is inputted with previous rewards-to-go, states, actions and current
reward-to-go and state. It then predicts the next action to be taken in order to
achieve the desired reward. After the predicted action is executed by the robot,
we observe the next state and calculate the new reward-to-go based on the re-
ceived reward.

positional encoding, a time-embedding is added to the embedded tokens and further fed
into the DT. During training, a full recorded trajectory τ is inputted into the DT. The DT
predicts action at for each timestep t in the trajectory based solely on tokens in the same or
previous timesteps. For each predicted action ãt , a loss is calculated comparing between
the predicted action ãt and the actual action at from the recorded trajectory. The auxiliary
loss is the sum of the temporal losses and is given by

LDT =
T

∑
t=1

loss(ãt ,at). (4.5)

The DT network is trained by back-propagation with a set of pre-recorded trajectories to
minimize LDT .

During inference and at time t, the DT predicts the next action ãt+1 based on all pre-
vious tokens {R̂t ,st ,at , R̂t−1,st−1,at−1, . . .}. Action at+1 is then exerted on the robot fol-
lowed by observing the next state st+1 and updating the reward-to-go R̂t+1. This process
is repeated until reaching the goal.

DT Trajectories. As mentioned before, DT does not maximize expected reward but
instead produces a sequence of actions that should yield a specifically desired reward. The
desired reward is inputted into the DT, and must be updated on the fly once any reward is
awarded. Therefore, we define the reward-to-go token at time t as

R̂t =
T

∑
t ′=t

rt ′. (4.6)
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Furthermore and since this is a multi-goal problem, the DT must receive the desired goal
for which to generate a sequence of actions. Hence, the desired goal distance dg is con-
catenated to the state, creating a state-goal token ŝt defined as

ŝt = (st∥dg), (4.7)

where ∥ denotes concatenation. The last token will be the action as defined before. With
the above said, each trajectory τi ∈ P is reformulated to a DT trajectory consisting of
rewards-to-go, state-goals and actions in the form

τDT i = (R̂0, ŝ0,a0, ..., R̂Ti, ŝTi,aTi). (4.8)

The DT training set is now PDT = {τDT 1 , . . . ,τDT M}. In this form, the DT can autoregres-
sively train and generate new actions on the fly.

4.4 Sim2Real

Sim2Real Adaptation. The strength of training the DT in simulation is the ability to
learn how to throw without any prior while avoiding physical risks. Such process over a
real robot is very dangerous and cannot be done. Nevertheless, the robot learns the general
motions in simulations while the reality gap prevents direct transfer to the real robot. In
order to fully transfer our model to the real robot, the simulation-trained DT is fine-tuned
with a small number of throws collected from the real robot. To do so, we exert the
simulation-trained DT on the real robot in order to conduct real throws to random goals.
For each throw, we multiply the actions {a0, . . . ,aT} with a random gain α ∼ U(1,αmax).
Multiplying the actions by α assists in exploring the real robot domain and in bridging the
reality gap. We further augment the collected data as described in Section 4.2. The new
throw samples are used to re-train the DT model and refine its weights for it to adapt to
the new domain.

Simulation Tuning. While the above sim2real method is sufficient for transferring a
simulation trained model to the real robot, tuning the simulation prior to collecting data can
reduce the required number of real throws to be collected. Therefore, Baysian optimization
is used to further reduce the reality gap [27, 37].

First, a set of M state trajectories Treal is collected from the real robot by applying
sequences of actions A. The gap between the Treal and a set Tsim recorded with the same

16



action sequences A is defined to be

Lgap =
M

∑
i=1

MSE(τsim
i ,τreal

i ) (4.9)

where τsim
i ∈ Tsim and τreal

i ∈ Treal for i = 1, ...,M. If Lgap is minimal, the simulation can
be said to best describe actual robot. Therefore, we search for the PID control gains of
the simulated robot actuators that yield similar behaviour to the real robot. In other words,
Baysian optimization is used to solve

p = argmin
p

Lgap, (4.10)

where p is the vector of PID control gains for all actuators. At each iteration, the sequence
of actions A is exerted on the simulated robot with the instantaneous control gains p to ac-
quire updated Tsim and Lgap. The optimization process repeatedly updates p until reaching
the minimal gap value.
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5 Experiments

5.1 Setup

Robotic Hardware. The proposed approach is experimented with a six-degrees-of-
freedom Yaskawa Motoman GP8 industrial arm equipped with a Robotiq 2f-85 parallel
gripper (Figure 1.1, bottom). Needless to say, training a policy entirely on such powerful
robot without any prior of how to throw is extremely dangerous. Without loss of generality
and for safety during testing, the throw motion is bounded to a plane perpendicular to the
horizontal floor and, thus, the DT learns only to move the second, third and fifth joints.
The direction of throw is, therefore, determined analytically according to (xg,yg) by φ and
set by the first joint which is perpendicular to the floor. Similarly, the remaining joints are
set constant to zero. Due to the dynamic specifications of the robotic arm, the throwing
distance is bounded to dg ∈ [50,200] centimeters. Furthermore, the gripper opens and
releases the object when value agr of the current action is below a threshold τ . The value
for τ is chosen to be the mean of all the gripper actions in the training dataset acquired
in simulation. The communication frequency with the arm is 10Hz while the maximum
trajectory length is set to 1 second yielding an upper bound of Ti ≤ 10 timesteps for a
trajectory. Furthermore, we allow the DT to access all previous steps at any given time
along the trajectory. The system is controlled using the Robot Operating System (ROS).
Videos of the experiments can be seen in the supplementary material. We couldn’t control
the velocities of the motors in the arm directly, as it was never designed for this, so we
used a Taylor’s approximation for position of every motor:

θt = θt−1 +ωt/ f . (5.1)

Where θt is the motor angle and ωt is the predicted motor velocity.

Throwing Evaluation. Fine-tuning and initial evaluation is done by throwing a
cube of size 1.5× 1.5× 1.5 cm with mass of 15 g. Only for evaluation of the throwing
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performance in the real world, a motion capture system with eight OptiTrack Prime 41
cameras was used. Markers were attached on the base of the robot, on a target plate and
on the thrown object. In this way, the robotic arm can automatically detect the goal xgoal

relative to itself and throw the object to the target. The object landing position xland is also
detected by the cameras. A throw error is calculated by e = ∥xgoal − xland∥. We define a
test procedure in which an object is thrown to 30 uniformly distributed pre-defined goals.
The test accuracy is the mean 1

30 ∑
30
i=1 ei of all throws.

Simulation. The same robot was modeled in the ROS-Gazebo physics engine. The
dynamic properties of the simulated arm were chosen arbitrary while in the same scale
of the real one. Throw data was collected with an object of the same size and mass as
for the real system. Noise parameters were set to θ = 0.02, µ = 0 and σ = 0.2. In
addition, data was collected with a success radius of ρ = 0.5 cm. With these conditions,
random trajectories were generated and recorded for training the DT. Since no prior of how
to throw was given to the simulation, the recorded trajectories are out-of-distribution to
feasible throws. Examples of these random non-feasible throws used for training are seen
in Figure 1.1 (top row). To achieve a physical grasp in the simulation we used a gazebo
plugin that simulated grasping by connecting the object to the gripper upon closure, and
disconnecting when the gripper is opened. This is not ideal and introduced some noise to
the simulation that was not present in the real robot setup, reducing the performance in the
simulation.

5.2 Model Training

The acquired simulation data is used to train a DT model as described in Section 4.
The model architecture and hyper-parameters were optimized to yield the best simulation
scores. In particular, the DT architecture, based on GPT, was chosen to be with embedded
dimension of 128, 1 hidden layer, 1 attention head and a ReLU activation function. Ac-
tions are predicted by including an additional linear layer at the DT output. A Tanh and
Sigmoid activation functions are applied to the actuator velocities ω1, . . . ,ωn and gripper
command agr, respectively, from the outputted action vector at . This DT model yields a to-
tal of 210,058 trainable parameters. For the DT model to predict actions, the loss function
to be minimized in training was defined to be the sum of the Mean Square Error (MSE) on
actuator velocities and Binary Cross Entropy (BCE) on the gripper action. The model was
trained using the AdamW optimizer with a learning rate of 10−4, weight decay of 10−4,
dropout of 0.1 and a linear warm-up for the first 104 gradient steps. The model was trained
for 100 epochs, where each epoch consists of 100 optimization steps on mini-batches of
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128 trajectories sampled uniformly from the simulated dataset. In order to get the very best
model, we evaluated our model in the simulation every iteration by conducting 20 throws
with goals evenly distributed inside the throwing range, and saved a snapshot of the best
performing model, considering average distance from target. While training we noticed
that our model was producing actions, in which the last element that was responsible for
the releasing timing of the object, was prone to overfit to specific timesteps. In order to
avoid this, we added random timestep translation to the trajectory, forcing the model to
take actions based on current and previous states and actions and not blindly based on
timesteps.

5.3 Simulation Results

We first analyze the performance of the DT in the simulation environment.

Data quantity and augmentation. We begin by studying the performance of the
DT with regards to the amount of simulated data and augmentation parameter Kher. A
set of 1,000 random trajectories was collected in simulation as described above. The DT
was trained multiple times with an increasing number M of trajectories. The baseline
approach is training the DT directly with the raw data without including HER and aug-
mentation. Hence, the DT is trained with trajectories labeled by randomly generated goals
and rewards given accordingly for success or miss of these goals (0.5% probability of a
success). Furthermore, for a specific number of trajectories, training was performed over
four different HER augmentation parameters Kher = {0,1,3,5}. For Kher = 0, the actual
landing position xland was set as the goal xgoal of the corresponding trajectory. With data
augmentation and when Kher > 0, Kher additional trajectories were generated with sampled
goals in the vicinity of xland as described in Section 4.2.

Figure 5.2 presents throw accuracy results with regards to the number of training tra-
jectories and Kher. First, the model reaches saturation with above 500 throws. In addition,
HER augmentation is shown to be significant in increasing the accuracy. Nevertheless,
augmentation with Kher > 0 (i.e. adding more trajectories beyond the modified one) ex-
hibits no significant improvement over accuracy. Moreover, various values for the goal
radius in the range ρ ∈ [0.5,20] cm were tested while not providing significant change in
performance.

Data Sparsity. We next analyze the ability of the DT to generalize and extrapolate
to out-of-distribution goals. Figure 5.3 shows the distribution of 500 collected random
trajectories (in black) used for training with respect to the throwing distance dg and when
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Figure 5.1: Deployment example of the trained DT on the simulated robot for
throwing the object to a desired target.

Figure 5.2: Throw accuracy with regards to the number of training trajectories
and HER augmentation parameter Kher.

Kher = 0. Examples of such throws are seen in Figure 1.1 (top row). Only 14% of the ran-
dom throws resulted in the object landing within our desired working range dg ∈ [50,200].
On the other hand, Figure 5.3 also shows (in red) the distribution of 1,000 successful
throws (i.e., hit within 1cm radius) to the desired range dg ∈ [50,200] while using the
trained DT policy. Hence and during test time, the DT manages to hit out-of-distribution
goals within this range with high success rate. Figure 5.1 shows an example of a successful
simulated throw where the goal is out-of-distribution to the training trajectories.

Baseline Comparison. We compare our results to DDPG [24] and Behavioral
Cloning (BC) [42], also discussed in Chapter 3. DDPG is a common Temporal-Difference
learning algorithm for continuous control. Similar to DT, BC is a supervised learning al-
gorithm. The objective of the comparison is to analyze whether common RL approaches,
i.e., DDPG and BC, can match the throw accuracy and data efficiency of the DT. In ad-
dition, we are interested in the learning stability in terms of loss convergence. A similar
setup and training process were performed for all methods. All methods were trained and
tested in simulation.
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Figure 5.3: Distribution of throws in the training dataset (black) compared to
successful test throws (red). Despite the sparsity of throws for dg > 50cm in
the training dataset, DT manages to make accurate throws to out-of-distribution
goals.

The hyper-parameters of the models were optimized to converge and reach minimal
loss. For DDPG, we used the work of Marcin Andrychowicz et al. [3] to help us opti-
mize the hyper-parameters of the algorithm until it converged. The actor was formed by a
Multi-Layer Perceptron (MLP) with two layers and 64 neurons, each. Similarly, the critic
is formed of two layers and 256 neurons, each. A buffer of 10,000 trajectories was used
and trained for 100 gradient steps for every 40 trajectories executed. Other ratios of gra-
dient steps per trajectories collected caused the algorithm to not converge. The learning
parameters are as described in Section 5.2. Similarly, data augmentation is as described
in Section 4.2. Different Kher values were tested while the best convergence was achieved
with Kher = 7. Furthermore, the optimal radius value for the reward (4.2) is ρ = 2cm.
BC is implemented similar to DT with an MLP of three layers comprising {64,128,256}
neurons. The current and ten past states are inputted to the MLP which, in turn, outputs
the next action.

Table 5.1 presents the comparative results between the three methods along with an-
other baseline of sole random throws to arbitrary goals without any policy. We note that in
the test, goals are set in out-of-distribution distances. Hence and in terms of accuracy, DT
outperforms with the best accuracy and exhibits the ability to extrapolate to farther dis-
tances. On the other hand, DDPG and BC provide poor results while better than random
throws. While DDPG has better results than BC, it requires a large amount of training data.
The learning stability was also evaluated by measuring the variance of the evaluation score
across the epochs. Results show that stability of DT is lower by an order of magnitude than
DDPG. In addition to training stability, we found the DDPG algorithm highly sensitive to
changes in hyper-parameters, easily resulting in divergence or bad performance.
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Table 5.1: Baseline comparison

Method
Number of Mean error Stability

throws (cm) (cm2)
Random throws 500 121±136 -
BC 500 Random 39.3±32.8 6
DDPG 6,360 On-policy 17.8±14.0 3,020
DT 500 Random 8.2±6.4 67

Figure 5.4: Number of real throws required for fine-tuning the DT model.

5.4 Real Robot Results

Fine-tuning with Real Throws. When transferring the pre-trained DT model to
the real robot, the yielded mean error for test throws is 80cm. As described in Section
4.4, the simulation model acts as a prior and real throws are required in order to fine-tune
it. Hence, a dataset of real throws was collected by generating a set of random goals
and attempting to throw to them using the pre-trained model and when αmax = 3.0. After
applying HER, the prior DT model is refined. We next analyze the required number of
real throws to reach accurate performance. Figure 5.4 presents the mean throw error with
regards to the number of real throws. For comparison, we also train a new DT model
without prior training in simulation and with only the real throws. Hence, the model can
be seen as trained with only expert data. Results show significant accuracy improvement
with only a handful of real throws. For instance, fine-tuning with only 5 and 10 throws
reduces error to less than 11cm or 6cm, respectively. With more throws, accuracy keeps
improving while improvement rate declines. The error with 50 throws is 4.3cm. Results
with only expert throws are similar and show ability to train a new model with only few
good samples.
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Figure 5.5: Throw accuracy with regards to the distance of the goal dg for (blue)
simulated robot, (green) real robot with non fine-tuned DT and (orange) real
robot with fine-tuned DT.

Real Robot Performance. The best performing model from the previous section
is chosen for further analysis. Figure 5.5 shows throw accuracy for the simulated and
real robots with regards to the distance to the goal dg. First, the real robot performs very
poorly with a non fine-tuned DT emphasizing the significant reality gap. However, with
only few real throw samples for fine-tuning, the DT model achieves better accuracy than
the simulation with a mean error of 4.3cm. For both domains, higher errors are apparent
for targets farther than 170cm as the throw is more complex. On the other hand, throwing
to a 15×15 cm target box positioned in distance of up to 180cm would yield approximately
100% success rate.

Generalization To Other Objects. We next test the ability of the DT to generalize to
other objects without additional fine-tuning. Along with the cuboid, we test an additional
six objects, seen in Figure 5.6, including: squeeze ball, cylinder, box, sand ball, copper
coil and pencil. Each object is tested for success rate in throwing to short (80 cm), medium
(130 cm) and long (180 cm) distance goals. For each goal, the object is thrown 10 times. A
success is defined to be hitting a rectangular plate of size 15×15 cm. Table 5.2 summarizes
the success rate for the throws along with physical properties of the objects. For better
understanding, we make a distinction between throws where the initial grasp is on or off
the Center-of-Mass (CM) of the object. Off-set to the CM is randomly placed in each
throw. When grasping the object on its CM, the model generalizes well and the success
rate is high for all objects. However, throws with non-CM grasps to medium and long
distances have lower success rate. While having some ability to hit the goal, the model
was not trained to compensate for the elongation of the object yielding bias in the throw.
For such compensation feature, the model must have a mean to measure the location of
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Figure 5.6: Seven test objects including (a) cuboid (with reflective markers, (b)
squeeze ball, (c) cylinder, (d) box (e) sand ball, (f) copper coil and (g) pencil.

Table 5.2: Throwing success rate out of 10 throws for seven test objects.

Object
CM grasp Non-CM grasp

Mass Dimensions Success Rate for dist. Success Rate for dist.
(g) (cm) 80cm 130cm 180cm 80cm 130cm 180cm

(a) Cuboid 15 1.5×1.5×1.5 100% 100% 100% - - -
(b) Squeeze ball 25 radius 3 100% 100% 100% 100% 50% 50%
(c) Cylinder 50 radi. 2, heig. 8 100% 100% 100% 100% 60% 60%
(d) Box 120 3×6×9 100% 100% 100% 100% 40% 40%
(e) Sand ball 60 radius 2.5 100% 100% 100% 100% 0% 0%
(f) Copper coil 386 radi. 2.2, heig. 6.5 100% 100% 90% 90% 40% 0%
(g) Pencil 6 radi. 0.4, len. 18 100% 100% 100% 90% 50% 40%

the CM, which is not available in this work. We leave this to future work.
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Figure 5.7: Snapshots of four throws (from top to bottom): squeeze ball (dg =
180cm), pencil (dg = 180cm), cylinder (dg = 140cm) and box (dg = 90cm). Objects
are marked with a yellow circle for better visualization.
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6 Conclusions and Future Work

In this work, we have proposed a data-efficient framework for object throwing with DT.
A policy is trained off-line using data recorded in simulation through randomized actions
without any prior on how to throw. In addition, the simulation consists of arbitrary physical
parameters with a slight pre-tuning to the real robot. Then, the DT is fine-tuned with only
several real throw examples. In particular, a set of 5-10 throws is sufficient to provide
throw accuracy of less than 10cm. Furthermore, experiments on a set of different object
yielded high success rate. However, when grasping an object off its CM, the success rate
declines. Future work may consider addressing this by including visual feedback or a
Force/Torque sensor that can embed grasp off-sets from object CM.

To the best of the author’s knowledge, this is the first implementation and experimen-
tal analysis of sim-to-real with DT and using DT for the throwing problem. Achieving
accurate throws with a real robot in a completely model-free manner, with very low num-
ber of random samples while utilizing HER, and even as low as 10-20 of good samples.
We believe this framework could further be extended to many other complex dynamic and
kinematic tasks, and reduce the effort that is required to transfer from simulated environ-
ment to a real robot.
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תקציר

שימושיםהרבהוכוללתהרובוטשלהעבודהטווחאתמגדילהרובוטיותזרועותבאמצעותחפציםזריקת

לספקיכוליםאנליטייםשמודליםבעודועוד.מחזורייצור,בפסיהתנהלותאריזה,מיון,תעשייתיים;

מחיזוקים''למידהאלגוריתמיהמערכת.פרמטרישלמדויקשיערוךמצריכיםהםמספקים,ביצועים

)Reinforcement Learning(מדיניותלספקיכולים)Policy(הםאבל,מקדים,ידעשוםללאזריקה

מאודהרבהשלוקחדברמסימולציה),ממידע(בשונההאמיתימהעולםמידעשלגדולותכמויותמצריכים

נשתמשכאשרנמוכיםלביצועיםיביאהנראהככלבסימולציהאימוןשני,מצדסכנה.מהווהוכמובן,זמן

ברובוט האמיתי.

Decisionה-בארכיטקטורתהשימושאתחוקריםאנוזובעבודה TransformersבקיצוראוDT,

מחיזוקיםלמידהלאלגוריתמיבניגודהאמיתי.לעולםסימולציהמבוססתממדיניותלעבורשלהוהיכולת

בהשגחהלמידהבאמצעותDTומאמניםזמנית,כסדרהשלנוהבעיהאתמנסחיםאנומודרניים,

)Supervised Learning.(-הDTב-מאומןoff-line,מאודשרחוקהמסימולציהשנאסףמידעעל

DTה-מכןלאחרלזרוק.איךשלמקדיםידעשוםללאלחלוטיןרנדומליותפעולותבאמצעותמהמציאות,

אמיתיות.זריקותשל)5(כ-בודדמספרבאמצעות)Fine-Tune(עדיןכוונוןעובר

כך,עלבנוסףס"מ.4שלגודלבסדרשגיאהעםגבוהיםלדיוקיםמגיעותשוניםחפציםשלזריקות

המרחקיםלהתפלגותמחוץשנמצאיםלמרחקיםמדויקתבצורהולזרוקאקסטרפולציהלבצעיודעDTה-

אימוןוללא,מומחהשלבודדותזריקותשמספרמראיםאנוכך,עללהוסיףהזריקה.בדוגמאותשיש

מקדים כלל בסימולציה, מספיקות כדי לאמן מדיניות מדויקת.
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