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Learning Haptic-based Object Pose Estimation
for In-hand Manipulation Control

with Underactuated Robotic Hands
Osher Azulay, Inbar Ben-David and Avishai Sintov

Abstract—Unlike traditional robotic hands, underactuated
compliant hands are challenging to model due to inherent
uncertainties. Consequently, pose estimation of a grasped object
is usually performed based on visual perception. However, visual
perception of the hand and object can be limited in occluded or
partly-occluded environments. In this paper, we aim to explore
the use of haptics, i.e., kinesthetic and tactile sensing, for pose
estimation and in-hand manipulation with underactuated hands.
Such haptic approach would mitigate occluded environments
where line-of-sight is not always available. We put an emphasis
on identifying the feature state representation of the system that
does not include vision and can be obtained with simple and
low-cost hardware. For tactile sensing, therefore, we propose
a low-cost and flexible sensor that is mostly 3D printed along
with the finger-tip and can provide implicit contact information.
Taking a two-finger underactuated hand as a test-case, we analyze
the contribution of kinesthetic and tactile features along with
various regression models to the accuracy of the predictions.
Furthermore, we propose a Model Predictive Control (MPC)
approach which utilizes the pose estimation to manipulate objects
to desired positions solely based on haptics. We have conducted
a series of experiments that validate the ability to estimate poses
of various objects with different geometry, stiffness and texture,
and show manipulation to goals in the workspace with relatively
high accuracy.

Index Terms—Pose estimation, in-hand manipulation, under-
actuated hands.

I. INTRODUCTION

WHILE the ability to manipulate an object within the
hand is a fundamental everyday task for humans, such

problem remains challenging for robots. Traditional robotic
hands, such as the Shadow and the Allegro hands [1], have
achieved significant accuracy and performance. However, they
have complex structure while being fragile, costly and difficult
to control [2]–[4]. Underactuated hands, on the other hand, are
mechanisms that can adapt to the shape of the object through
the use of compliance [5]. Consequently, they have gained
popularity in recent years due to their low-cost and ability to
maintain a stable grasp with open-loop control. In addition,
precision manipulation with underactuated hands have been
shown possible [6]–[8]. However, certain limitations hinder
practical usage. While pose estimation is generally available
analytically in rigid hands where the kinematics are known
[9], such model is rarely available for underactuated ones
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Fig. 1. Manipulating an object within an occluded cabinet using a robotic arm
and an underactuated hand into a target slot. Visual perception is not available
within the cabinet and, therefore, the hand must use haptic perception. We
assume that the position of the hole relative to the robot is known.

[10]. Acquiring a precise analytical model for an underac-
tuated hand is not always easy or feasible due to inherent
uncertainties and fabrication inaccuracies. Hence, estimating
properties such as joint stiffness, size, weight, friction and
inertia is a significant challenge [11]. To cope with the lack
of an analytical solution, data-based modeling was shown
useful in providing accurate predictions in motion planning
and control [12]–[14]. Such modeling approach is able to
intrinsically estimate model parameters that can be difficult
or impossible to model otherwise.

As mentioned above, exact analytical solutions are rarely
available for underactuated hands. Therefore, attempts to
model these hands in the context of precision manipulation
usually rely on external visual feedback. Calli and Dollar [7]
used a linear approximation of a two-finger hand to apply
visual servoing to track desired paths. Recently, Morgan et al.
[15] proposed an object agnostic manipulation using a vision-
based Model Predictive Control (MPC). The work in [16] used
a depth camera to estimate the pose of an object grasped
and partly-occluded by the two-fingers of an underactuated
hand. Extension of the work proposed the use of the depth-
based 6D pose estimation to control precise manipulation of
a grasped object [17]. Recent work [18] integrated allocentric
visual perception along with four tactile modules, that combine
pressure, magnetic, angular velocity and gravity sensors, on
two underactuated fingers. These sensors were used to train
a pose estimation model. More related, Sintov et al. [10]
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Fig. 2. (a) Structure of a tendon-based underactuated hand used in this work. The hand is comprised of two opposing fingers. Each finger has two passive
joints with springs where a tendon wire runs along its length and is connected to an actuator. In addition, each finger includes a FlX-finger for contact sensing.
A (b) detailed and (c) side view of the FlX-finger with the FSR sensor are also seen. When contact force is exerted on the contact pad by the object, the
flexible joint and pad deform. Consequently, the bulge is pressed onto the FSR which, in turn, outputs a voltage that depends on the contact distance from
the bulge across the pad along with the magnitude of the normal contact force.

proposed a data-based transition model where the state of
the hand involves kinesthetic features such as actuator torques
and angles along with the position of the manipulated object
acquired with visual feedback. While a visual approach may
exhibit good results, relying on continuous visual feedback
limits the performance of various tasks in which visual un-
certainty (e.g., poor lighting or shadows) or occlusion may
occur. In such cases, it may be impossible to solve the task
altogether. This may include operating tools at the back of a
cabinet or in confined spaces (Figure 1).

Information regarding grasped objects are often acquired
through haptic perception including both tactile sensing and
internal sensing of joint actuators known as Kinesthetic hap-
tics [19]. Traditionally, tactile refers to information received
from touch and contact sensing, while kinesthetic refers to
information sensed through movement, force or position of
joints and actuators. Tactile sensing is the leading method for
haptic-based object recognition [20]–[22]. State of the art in
tactile sensing is focused on optical devices where an internal
camera observes the deformation of a flexible surface during
contact with an object [23], [24]. Recent work has explored
the use of these optical tactile sensors with advanced deep
networks to estimate the relative pose of an object in contact
[25]. While these sensors can provide accurate performance,
they can complicate the hardware.

The abilities of underactuated hands in various tasks and
their advantages over traditional rigid hands have been widely
demonstrated in prior work [2], [7], [10], [12], [26], [27].
However and as discussed above, these abilities rely on
extrinsic visual perception. In this paper, we investigate the

ability to track and manipulate an object within a tendon-
based two-finger underactuated hand (seen in Figure 2) solely
based on haptics. As opposed to prior work where the hand’s
state included explicit object position acquired from vision
[10], visual perception is not relied upon in this work. Hence,
we explore the sole use of kinesthetic information available
to the hand along with novel low-cost tactile fingers termed
FlX-fingers. The FlX-finger is mostly 3D printed along with a
simple off-the-shelf force Sensitive Resistor (FSR). While the
use of FSR for tactile perception is not novel [28], we propose
a flexible 3D printed mechanism that augments the sensor and
provides more contact data. Therefore and unlike custom made
force sensors (e.g., [29]), we use a standard off-the shelf FSR
sensor and a 3D printed finger structure to acquire diverse
contact data.

With the FlX-fingers, we search for a feature representation
of the state of the hand while not including explicit pose infor-
mation about the object. Hence, the state of the hand includes
measurable features, either tactile or kinesthetic ones, that can
be mapped to the true position and orientation of the object.
Using such state representation, we study fundamental tasks
for in-hand manipulation without relying on visual perception:
learning an haptic-based pose observation model of a grasped
object and controlling the motion of the hand to manipulate
the object to some goal. Furthermore, we aim to understand
the data requirements and learning abilities over a set of
test objects. While an observation model enables somewhat
estimation of the pose of the object, the accuracy of a learned
model is limited and reaches saturation with some amount of
data. Hence, we train a critic model with independent data
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to estimate prediction errors. The critic is then incorporated
in a Model Predictive Control (MPC) [30] to manipulate an
object to a goal position while minimizing estimation errors
along the motion. In such way, the controller will be able to
avoid regions where the observation model tends to provide
large erroneous predictions. The scope of this work is focused
on the information requirement for haptic-based object pose
estimation. While we do not aim for object-agnostic models,
we test the ability of a trained observation model to generalize
to new objects of different shapes that were not included in
training.

To summarize, the contributions of this work are as follows:
• A novel 3D printed simple and low-cost tactile finger is

proposed for underactuated hands.
• An observation model is proposed to map haptic sensing

of an underactuated hand to the pose of an object. The
haptics include sensing from the tactile fingers along with
kinesthetic sensing from the actuators of the hand. With
such, a study is conducted about the haptic information
required for object pose estimation with an underactuated
hand while including tactile and kinesthetic sensing.

• We analyze the partial-occluded pose-estimation problem
where an initial visual glance of the grasp is available
prior to performing the task in an occluded region.

• Models for pose estimation are shown to be somewhat
generalizable.

• We propose an MPC approach to manipulate a grasped
object to desired goal positions solely based on the pre-
dictions of the observation model. While an entire pose
estimation is available, controlling the orientation of the
object is highly dependent on the initial grasp. Hence, the
MPC can only control the position of the grasped object.
To include orientation, a designated motion planning with
some re-grasping maneuvers is required in future work.

• A critic model is added to the MPC approach such
that the controller can reason about the accuracy of
the observation model and avoid potentially erroneous
actions.

To the best of the author’s knowledge, this is the first analysis
of pose estimation with underactuated hands solely by using
simple and low-cost haptic perception. Achieving haptic-based
pose estimation would enable further fusion with vision for
better estimation in unstructured or partly-occluded environ-
ments.

II. RELATED WORK

The presented work discusses the use of underactuated
hands in occluded environments by using haptics. Related
work on these topics is briefly discussed below.

Underactuated robotic hands. Underactuated hands are
compliant mechanisms that exhibit complex behavior due to
the passivity of the adaptive joints [10]. Compliance can
be achieved in various mechanisms such as inflating soft
materials [31], [32], or through passive joints with springs
and tendons [2]. The work in this paper will focus on tendon-
based underactuated hands seen in Figure 2a. The recent
introduction of open-sourced hands fabricated through 3D

printing has enabled easy access to low-cost hardware [33].
However, precise mechanical properties such as joint stiffness,
contact coefficients and joint friction are hard to extract.
Consequently, accurate models of such systems are difficult
to formulate. Modeling tools, introduced in several works
[5], [34], [35], examine joint configurations, torques, and
energy with a simplified frictional model. Nevertheless, these
techniques have been shown to be sensitive to assumptions in
external constraints and are generally suitable for simulations.
Recent work has proposed the self-identification of necessary
parameters through exploratory hand-object interactions using
an external camera and particle filtering [36].

Manipulation in occluded environments. Additional sen-
sor modalities are commonly used to augment or alternate vi-
sion [37]. Most work utilizes haptic sensors to reason about the
state of contact [38], [39]. Haptic perception is generally used
to learn various features of an object in uncertain environments
to grasp and manipulate it. Such information may include
stiffness, texture, temperature variations and surface modeling
[40]. Often, haptic perception is used alongside vision to refine
initial pose estimation [41]. For instance, recent work has
trained a policy to leverage multimodal feedback in contact-
rich manipulation tasks from tactile and vision through self-
supervision [42]. Another work used 6-axis force-torque and
tactile sensors on a multi-finger rigid hand to train temporal
neural-network models for in-hand manipulation tasks [43].
Opposed to contact sensing, a different approach used acoustic
perception to gain information regarding hand-object contact
[44]. Radio frequency perception was used in a different work
to retrieve objects in fully-occluded settings [45].

Contact sensing. The common approach for pose estima-
tion during manipulation is tactile to sense contact. Such
sensing has been generally achieved using simple force or
pressure sensors [46]. As such, Koval et al. [47] used contact
sensors and particle filtering to estimate the pose of an
object during contact manipulation. In recent years, sensor
arrays have become more common due to advancements in
fabrication abilities and due to their effectiveness in covering
large contact areas [48]. The work by Sodhi et al. [49], for
instance, used data from a optical tactile sensor to estimate
the pose of an object being pushed. Nonetheless, an analysis
in [50] has proven that sensor complexity does not necessarily
provide better performance mainly due to the way tactile data
is represented. It was shown that simpler fingertip sensors
yielded equivalent accuracy.

III. PROBLEM FORMULATION

We consider a two-fingered adaptive hand comprised of
two opposing tendon-based fingers as seen in Figure 2a. Each
finger has two compliant joints with springs where a tendon
wire runs along its length and is connected to an actuator.
Also, each distal link of the finger has high friction pads to
avoid slipping. Let x ∈ C and a ∈ U be some observable state
of the hand and action vector, respectively, where C ⊂ Rn and
U ⊂ R2. Action a is the change of actuator angles (i.e., pulling
or releasing the tendons) over a fixed time step ∆t. The true
state of the hand is not entirely accessible. Hence, we consider
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Fig. 3. Haptic-based feature space C where motion is governed by a transition
model such that xt+1 = f(xt,at). The observation model maps a state xt
in C to the corresponding pose st of the grasped object in SE(2). Hence,
a path from xt to xt+4 is mapped (gray dashed lines) with the observation
model Γ to the approximated path of the object in SE(2) (dotted curve from
st to st+4). The solid curve in SE(2) denotes the true path of the object.

a feature state in space C that may correspond to different
kinesthetic features (e.g., actuator angles and loads) and tactile
feedback. Also, the system is governed by a transition function
f : C ×U → C such that, given the current state xt and action
at, the next state is given by xt+1 = f(xt,at).

As stated in the introduction and due to inherent fabrica-
tion uncertainties, neither the true state of the hand nor an
analytical formulation of the transition model are known. In
addition, feedback regarding the true pose of the manipulated
object is not always available with vision, for instance, in an
occluded environment. The goal is therefore twofold. First, we
search for n state features that are easy to measure and best
embed the pose s ∈ SE(2) of a grasped object. Such state
representation should enable training an observation model
Γ : C → SE(2) to estimate the pose of the object. Second,
we wish to explore the use of such state representation to
manipulate objects without external pose feedback. Hence,
we utilize a learned state transition model f̃ to plan and
control motion in the feature space C while acquiring desired
positional motion in the work-plane. The above formulation
is illustrated in Figure 3. We note that it may be possible to
learn a direct model for current state and action to the next
pose, i.e., h : C×U → SE(2). However, such model would not
enable propagation as required in planning and Reinforcement
Learning (RL).

IV. LEARNING AN OBSERVATION MODEL

In this section, we discuss the possible kinesthetic and tac-
tile features to be included in the feature state representation.
This includes the design and fabrication of the FlX-finger.
Further, we discuss data-based models to learn model Γ.

A. FlX-finger: A low-cost tactile finger pad

We present the design of a low-cost tactile finger termed
FlX-finger. FlX-finger is a flexible 3D printed mechanism that
augments the sensor and provides more contact data. It is
mostly fabricated through 3D printing and its shape is based
on the design of the distal finger link of the Model-T42 hand
[33]. The FlX-finger is composed of four parts seen in Figure

2b: finger body, contact pad, FSR sensor and sensor socket.
The finger body is connected to the base of the contact pad
solely through a flexible joint. The entire finger body including
the base of the contact pad is a one-shot 3D print. After print,
we cast Urethane Rubber on the base of the contact pad to
acquire an high-friction and soft surface as in [33]. The sensor
socket is also printed and contains the FSR. Hence, the sensor
socket with the FSR are positioned fixed to the finger body
within a designated groove. At such configuration, the FSR is
in contact with a small bulge on the back side of the contact
pad as seen in Figure 2c. The bulge applies force on the FSR
when pressure is exerted on the contact pad and the flexible
joint deforms.

FSR sensors are made of polymer films that vary their
electrical resistance upon changing pressure on their surface.
They are simple to use and low-cost. The FSR sensor is
connected to an analog pin of the Arduino Nano through a
voltage divider of 4.7kΩ resistor. When an object is being
pressed against the contact pad, the flexible joint and pad
deform and press the bulge onto the FSR. The contact distance
from the bulge across the contact pad along with the magnitude
of the normal contact force would define the force on the
FSR and, therefore, the measured voltage. Hence, different
contact locations across the pad provide different voltages.
Consequently, pressure on the contact pad provides voltage
signals that embed information regarding the location and
magnitude of contact. To acquire somewhat repeatability of
measurements, leveling screws on the back side of the finger
body are used to vary the height of the sensor socket and, thus,
tune the initial voltage on the FSR. By standard, the initial
voltage Vo is determined with a weight of 100 grams directly
placed on the contact pad when in an horizontal posture.
Measurements are then taken relative to Vo. To sum-up, a
standard off-the shelf FSR sensor and a 3D printed finger
structure is proposed to acquire diverse contact data when
grasping an object. The prototype cost of the FlX-finger is
estimated at less than $10.

In the formation of the tactile finger, we expect to acquire
a force distribution along the contact pad yielding infor-
mation on contact position. To validate this and acquire a
characteristic force distribution of the FlX-finger, we have
designed an experiment using a six degrees-of-freedom robotic
arm equipped with a Force/Torque sensor and a rigid pole
at its tip as seen in Figure 4. During the experiment, the
pole was repeatedly pushed against the finger with predefined
forces between 0 − 10 N and at 50 equal length (1 mm)
locations along the contact pad. Results for FlX-finger with
Vo = 200 mV are seen in Figure 5. The results show a
near linear behaviour in the work region of contact. Due to
the spring-like mechanism within the finger, the signal output
increases as the contact location approaches the FSR, and
decreases when moving away. While the force-distribution of a
single FlX-finger cannot be used to identify explicit or accurate
contact position, these results indicate that contact information
is embedded in the measurements. However, we care about the
pose of the object and not explicit contact locations. Hence,
we explore the use of two force-distributions from two FlX-
fingers along with kinesthetic haptics to build an observation
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Fig. 4. Experiment to characterize signal distribution on the FlX-finger.

Fig. 5. Signal distribution results for the FlX-finger. The grey area denotes
the main working region during manipulation. When the contact is at the back
of the finger, force is reduced on the FSR and the signal becomes negative
(relative to the initial load).

model as described next.

B. Training data

Training data is collected by grasping an object and manip-
ulating it with random actions. During manipulation, ground-
truth data of object poses st is provided. Thus, the resulting
data is a set of observed states, poses and actions P =
{(x1, s1,a1), . . . , (xN , sN ,aN )}. In our work, we investigate
the contribution of different available features in x for learning
accurate observation and transition models. These include
actuator torques, actuator angles and FlX-finger tactile voltage
signals. Given a state definition, we train an observation model
st = Γθ(xt) to map a feature state at time t to the true pose of
the object. Vector θ consists of the trained parameters of the
model. Model Γθ is trained using recorded input and output
{xi, si}Ni=1 from P . The actions in P will later be used to
train a transition model.

C. Observation Model

We investigate several architectures of regression mod-
els that could approximate st = Γθ(xt) in real-time. We
test Gaussian Processes (GP) [51], Fully-Connected Neural-
Network (FC-NN) and Long Short-Term Memory (LSTM)
based Recursive-NN (RNN). GP and FC-NN provide predic-
tion for a single time-step, i.e., based on an instantaneous
state perception. We employ local GP regression similar to
[10] where the function’s value at a given query state is
predicted using a subset of the training points that are in the
vicinity of the query point. LSTM is a time-dependant NN
where we exploit internal memory of the motion. Since the
force sensors may be slightly noisy, having several consecutive
measurements may improve accuracy. Hence, such model
is formulated by st = Γθ(xt,xt−1, . . . ,xt−w) where w is
the size of past state measurements to include. Observing
prediction accuracy of an LSTM model would provide insights
about the importance of previous states compared to single
state models. Since the motion of the object is slow while
prediction time is very fast (demonstrated in the experimental
section), latency between the measured state and prediction
is assumed to be negligible. Hence, the predicted pose suffi-
ciently corresponds to the true pose expressed by the feature
state.

D. Critic model

With the addition of data to the training of the observation
model, the accuracy improves until reaching saturation at some
point. Hence, the accuracy may be limited with the addition of
training data. This would be demonstrated in the experiments.
Inspired by [12], we use redundant training data to generate
a critic model et = Cϕ(xt) where et ∈ R+ and ϕ consists of
the trained parameters of the model. Model Cϕ is trained with
measured inputs xj and corresponding labels ej = ‖s̃j − sj‖
where s̃j = Γθ(xj) and sj is the ground-truth pose. The critic
provides an estimate of the haptic observation error. With the
critic, we would be able to plan and control the system to move
in regions with higher observation accuracy as discussed in the
next section.

V. TRANSITION MODELING AND CONTROL

Having a transition model xt+1 = f(xt,at) is a key
component for planning and control for an underactuated hand.
In this section, we discuss the training of a transition model
and its usage to control motion. The data described in Section
IV-B is organized in the form {(xi,ai), (xi+1)}Ni=1. Unlike
previous work [10] where actions were from a discrete set
with a cardinality of 4-8, actions in our work are continuous
within a normalized range [0, 1]. Similar to previous work
[7], [27] and since the hand is underactuated, we focus on
controlling the position of the object. The ability to reach some
orientation is highly dependent on the initial grasp. Hence,
including orientation, which is predicted by the proposed
observation model, requires a designated motion planning
while also considering re-grasping maneuvers (e.g., pick and
place). The orientation control problem is left for future work.
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As discussed in Sections I-II, previous work such as in
[10] used a vision-based transition model. In another work
[26], MPC is applied using image-based visual servoing with
a linear approximation of the system [7] without the use of
a transition model as in this work. While these methods and
others rely on visual perception, we propose an MPC approach
that is based on haptics and a data-based model. Hence, an
accurate motion to various goals is possible without the need
for a line-of-sight with the hand.

A. Learning a Transition Model

Given a feature state representation as discussed above,
we now learn a transition model to use in the control. A
straightforward parameterization of f̃φ(xt,at), where φ is
the a vector of network weights, can be difficult when the
sampling frequency is high and the consecutive states are too
similar [52]. Therefore, instead of learning a direct transition
function, we train a model to predict the change from state xt
given an action at over time step ∆t. The next state prediction
is, consequently, given by

x̃t+1 = xt + f̃φ(xt,at). (1)
Several data-based models are benchmarked for training model
f̃φ including GP [10] and FC-NN. To capture deviations that
could violate the standard Markov assumption on the state
space, we also learn a time-dependent LSTM-based RNN such
that x̃t+1 = xt + f̃φ(xt,xt−1 . . . ,xt−k,at) where k > 0 is
the number of preceding states. We note that the data used
for learning the transition model includes sliding of the object
along the contact pads relative to the fingers in some states
and actions. Hence, sliding is modeled and taken into account
in planning and control.

B. Haptic Servoing

Previous work by Calli and Dollar [7] have proposed the
use of Visual Servoing (VS) to control the hand for reaching
a goal position and tracking a path. VS utilizes a simple control
rule based on linear approximation of the hand-object system
and is only able to control the position of the object (without
orientation). The control maps the desired object velocity to
the required actuator velocity and is given by [7]

at =

[
1
Kx

1
Ky

− 1
Kx

1
Ky

]
vt, (2)

where vt = pg −pt, pg ∈ R2 is the desired goal position, pt
is the current position extracted from st and Kx,Ky > 0 are
constant scalars related to the hand. Position pt is originally
measured in real-time using visual perception. Let map Γ̃θ :
C → R2 be a position estimation function taken from the
pose estimation map Γθ. Our proposed Haptic Servoing (HS)
approach approximates pt such that vt = pg−Γ̃θ(xt). Hence,
the system is driven by measuring the haptic state rather than
having visual perception.

C. Haptic-based Planning and Control

Since we have no explicit feedback in SE(2), the above
HS control relies solely on pose predictions of the learned
observation model. However, the model includes some errors

Fig. 6. (Top) Control scheme and (bottom) iteration of the shooting method
in C within an MPC control to find the next action to drive the system to goal
position pg . Random action sequences are applied from the current state xt =
xcurrent and used to propagate states in C with the transition model. The
resulted paths are inputted to observation model Γθ to estimate their positions.
The first action of the path that reaches closer to the goal while having a low
critic error is chosen. In this example, four sequences are propagated (red,
cyan, blue and green). While the cyan path (ending with p2

t+H ) reached
closer to the goal than the red one (ending with p1

t+H ), it has higher critic
error. Hence, the first action a1

t of the red sequence is exerted on the hand.
This process is repeated until reaching the goal position.

and uncertainties over the state-space. While HS can be useful
to reach a near-by position (as will be demonstrated in the
experiments), it does not reason about these possible erroneous
predictions of the observation model. Consequently, inaccurate
predictions may deviate the motion from the desired goal. Our
objective is, therefore, to formulate a controller that can reason
about positioning inaccuracies without visual feedback. We
propose a Model Predictive Control (MPC) with a random-
sampling shooting method. As discussed in [15], MPC can
be advantageous for manipulation. In MPC, the next action is
optimized based on some cost function while considering the
future outcome of candidate paths. The first action of the path
with the lowest cost is exerted.

Given the current hand state xt, prediction horizon H and an
action sequence At,H = {at, ...,at+H}, the predicted path in
C acquired by propagating model (1) for H steps with actions
At,H is σt = {xt, x̃t+1, . . . , x̃t+H}. The cost of the path is
defined to be

J(σt) =
∑

xτ∈σt

[
w1‖Γ̃θ(xτ )− pg‖2 + w2Cϕ(xτ )

]
(3)

where pg ∈ R2 is the goal position and w1, w2 > 0 are
pre-defined weights. The first component in the sum of (3)
estimates the distance of states in the path to the goal. This
component prioritize paths that steers more towards the goal.
The second component, on the other hand, evaluates the
accuracy of the pose approximated by the observation model.
We aim to exert the path that takes the object closer to the
goal while having high certainty about its pose along the path.
Therefore, at time t, we search for the set of actions A∗t,H that
is the solution to

A∗t,H = arg min
At,H

J(σt). (4)
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Finding the optimal solution of (4), i.e., optimal sequence
of actions A∗t,H , could be slow and not suitable for real-
time control. Hence, we search for a near-optimal solution
in a random-sampling shooting setting. Algorithm 1 presents
the MPC-Critic control with the shooting method. Figure 6
presents the control scheme and illustration of the shooting
method within the MPC-Critic control. In each iteration and
current state xt = xcurrent, m random action sequences
{A(1)

t,H , . . . , A
(m)
t,H } are generated and their costs are evaluated

according to (3). The first action of the lowest cost sequence is
exerted. The process is repeated until reaching within distance
ε to the goal pg .

Algorithm 1: MPC-Critic(pg , H , ε)

1 Get current hand state xcurrent;
2 do
3 xt ← xcurrent;
4 Sample random {A(1)

t,H , . . . , A
(m)
t,H };

5 for i← 1 to m do
6 σt ← {xt};
7 for aτ ∈ A(i)

t,H do
8 xt ← f̃φ(xt,aτ );
9 σt ← σt ∪ {xt};

10 Ji ← J(σt) ; // sol. (3)
11 j ← arg min({J1, . . . , Jm});
12 a∗t ← first action in A(j)

t,H ;
13 Execute a∗t ;
14 Get current hand state xcurrent;
15 while ‖Γ̃θ(xcurrent)− pg‖ < ε;

VI. EXPERIMENTS

To validate the proposed approach and analyze the accuracy
of various state formulations, we have designed and built an
experimental system. We use only the two opposing fingers
of the three-finger OpenHand Model-O underactuated hand
[33]. The experimental system consists of the hand and an
automated reset mechanism as seen in Figure 7. Hence,
training data P is collected in episodes where, at each episode,
the robot grasps the object, performs in-hand manipulation
with random actions until it drops, and then repeats. Once
dropped, a thin string that runs through a hole in the center
of the object pulls the object into the reach of the fingers
toward a new grasp. The system is operated by the Robot
Operating System (ROS). During manipulation, data stream of
various features is available in 10 Hz and recorded including
instantaneous actions, actuator angles and torques, and tactile
signals from the FlX-finger. In addition, the pose of the object
relative to the hand base is recorded using fiducial markers and
cameras. We test eight prismatic objects. Six PLA objects with
different cross-sections seen in Figure 8: circular (15 mm and
10 mm radius), elliptical, square, crescent and arbitrary curved.
Two additional cylinders of 15 mm radius were used: one
flexible (printed with Thermoplastic Polyurethane) and one
wrapped with sandpaper for higher friction. Open-source FlX-
finger model, fabrication instructions, datasets, open-source

Fig. 7. Automated experimental setup based on the OpenHand model-
O underactuated hand.

Fig. 8. Six prismatic test objects.

code and CAD models of the test objects are available online1.

A. Pose estimation

We begin by observing pose estimation accuracy for the
cylinder of radius 15 mm. The collected training data com-
prises of N = 92, 700 points recorded by randomly applying
actions to the hand in multiple episodes. An additional 10, 000
test points were collected in separated episodes and were not
included in the training set in any way. Hyper-parameters
optimization of the three tested observation models yielded the
following architectures. The FC-NN is composed of 3 layers
with 300 neurons and a ReLU activation each. A dropout of
30%, early stopping and an L2 regularizer with factor 10−5

were included to reduce overfitting. For the LSTM based RNN,
the optimization yielded a network of 2 layers, 256 hidden
neurons each and a sequence of w = 5 past states. Next,
the output is fed into a 256 neurons FC layer with ReLU
activation. For both NN models, we used the Adam optimizer
along with the MSE loss function. GP with a radial basis
kernel used 100 nearest neighbors for local regression.

In our experiments, nine possible feature combinations for
a state representation are analyzed. The combinations are

1https://github.com/osheraz/haptic_pose_estimation



8

TABLE I
POSE ESTIMATION ACCURACY FOR A CYLINDER (15 MM) WITH VARIOUS FEATURE COMBINATIONS AND REGRESSION METHODS

Comb.
Features GP FC-NN LSTM

Actuator Actuator FlX Initial Position Orientation Position Orientation Position Orientation
angles loads fingers pose RMSE (mm) RMSE (deg) RMSE (mm) RMSE (deg) RMSE (mm) RMSE (deg)

1
√

22.1 ± 1.7 20.1 ± 1.8 20.6 ± 2.8 19.8 ± 2.7 18.8 ± 2.3 18.1 ± 2.4
2

√
10.5 ± 1.4 8.7 ± 1.2 10.6 ± 1.4 6.8 ± 1.9 10.1 ± 1.3 6.8 ± 1.8

3
√ √

8.5 ± 1.0 8.0 ± 1.1 8.6 ± 1.2 5.9 ± 0.8 7.7 ± 1.6 6.1 ± 0.8
4

√
6.6 ± 1.5 8.8 ± 3.4 6.5 ± 1.2 6.1 ± 1.4 5.8 ± 0.6 6.0 ± 0.8

5
√ √

6.0 ± 0.5 7.3 ± 1.8 5.7 ± 1.0 6.0 ± 1.3 5.3 ± 0.6 5.5 ± 1.0
6

√ √
5.1 ± 0.6 7.0 ± 1.0 4.4 ± 0.5 5.2 ± 0.6 5.1 ± 0.8 4.9 ± 0.8

7
√ √ √

4.6 ± 1.2 5.5 ± 1.8 4.3 ± 0.4 5.1 ± 0.8 4.0 ± 0.2 5.0 ± 0.5
8

√ √ √
4.3 ± 1.0 5.3 ± 2.0 4.3 ± 0.7 5.0 ± 0.9 4.2 ± 0.8 4.8 ± 1.0

9
√ √ √ √

4.1± 1.0 4.9 ± 1.7 3.9 ± 0.6 4.4 ± 0.8 3.1 ± 0.6 3.0 ± 0.6

listed in Table I. For comparison, we have also included
two feature combinations where the initial pose of the object
at the moment of grasp is known. Such scenario can occur
when a camera has an initial view prior to manipulating
the hand in a confined space. In addition, Table I presents
accuracy results for the object pose estimation during in-hand
manipulation. The accuracy for translation and orientation is
the RMSE between predicted and ground truth ones. Figure
9 shows a trajectory example of a grasped object during in-
hand manipulation and the predicted poses along it. Actuator
angles clearly provide meaningful information that is essential
for accurate estimation. Moreover, the results show that the
angles alone can provide relatively good accuracy. Actuator
loads provide somewhat accuracy improvement for GP and
FC-NN. However, including also tactile information from the
FlX-finger exhibits better accuracy for all models. While the
FlX-fingers cannot provide accurate predictions by their own
(Comb. 2), the results indicate that accuracy is limited by
the resolution exhibited in Figure 2c. The results also show
that including sequential past states with LSTM improves
accuracy compared to single state models (GP and FC-NN)
over all feature combinations. Also, having a glance at the
ground truth of the initial pose (Comb. 9), if available, exhibits
accuracy improvement. The average velocity of the object is
0.62 mm/sec and states are sampled at 10Hz while the LSTM
model, for instance, provides a prediction in 9 milliseconds.
Hence, an instantaneous sampled state sufficiently corresponds
to the predicted pose.

Table II presents additional accuracy results for the remain-
ing objects. The results show that the position estimation
exhibits similar or slightly higher errors than the 15 mm
cylinder. Results were fairly similar between the flexible and
rigid cylinders. Additionally, sliding was not visually observed
for the high friction cylinder and, therefore, the model was able
to produce more accurate estimations. Furthermore, orientation
is shown to be harder to predict as the complexity of the object
increases (e.g., crescent and arbitrary objects) and the available
haptics do not provide sufficient information. It is assumed that
higher resolution tactile sensors such as in [24], [25] would
better extract shape features and yield lower orientation errors.
Nevertheless and for all objects, having an initial glance at the
grasp pose enables accurate orientation prediction.

We next analyze the accuracy with regards to data size.
Recall that the total amount of data recorded was N = 92, 700

Fig. 9. An example of the (left) position and (right) orientation estimation
with three observation models over a test trajectory of the cylindrical object.
The gray shading illustrates the workspace of the hand approximated with the
collected data.

Fig. 10. Pose estimation accuracy with regards to the percentage of total
training data used with GP, FC-NN and LSTM-based RNN.

points. We note that it took approximately 12 hours for
automated collection of all data. The accuracy with regards
to data size is observed when considering feature combination
7. Hence, we arranged all data sequentially with no shuffling
and repeatedly trained the model for a varying portion of
the data. The mean prediction accuracy over the test data
with the three regression methods can be seen in Figure
10. The accuracy improves with the increase of data while
the error reaches near saturation at about 60% of the data
(corresponds to approximately 7 hours of data collection). The
performance provided by the haptics of the hand indicates the
ability to perform coarse in-hand manipulation tasks which is
experimented in the next sub-section.

Lastly, we study generalization properties of the LSTM-
based observation model for different objects that were not
included in the training set. The generalization is analyzed
by training a model on one object and evaluating it on test
data from the remaining ones. This is repeated for all objects.
Figure 11 shows the cross transfer accuracy across the various
objects for feature combination 7. Note that the diagonals
of the tables are the object-wise accuracy results presented
previously. The study shows that position predictions have a
higher transferability than orientation predictions. In general,
both position and orientation generalize better when trained
over circular objects of varying sizes and textures. Particularly,
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TABLE II
POSE ESTIMATION ACCURACY OF THE OBSERVATION MODEL FOR VARIOUS OBJECTS

Object cross-section Comb. GP FC-NN LSTM

Position
RMSE (mm)

Orientation
RMSE (deg)

Position
RMSE (mm)

Orientation
RMSE (deg)

Position
RMSE (mm)

Orientation
RMSE (deg)

Circular
(r = 10 mm)

7 5.1 ± 2.1 7.0 ± 4.6 4.6 ± 0.5 7.2 ± 1.1 4.4 ± 0.5 7.1 ± 1.1
9 4.8 ± 2.0 6.5 ± 3.2 4.0 ± 0.8 6.0 ± 2.0 4.0 ± 0.8 5.3 ± 2.0

Circular
(r = 15 mm, Flexible)

7 5.5 ± 2.1 5.8 ± 2.8 4.7 ± 0.5 4.1 ± 0.6 4.6 ± 0.4 4.0 ± 0.5
9 3.9 ± 2.4 5.1 ± 1.7 3.9 ± 0.4 4.7 ± 0.6 3.6 ± 0.3 3.9 ± 0.5

Circular
(r = 15 mm, High friction)

7 4.0 ± 1.1 5.5 ± 2.2 4.1± 0.4 5.3 ± 0.7 3.9 ± 0.4 5.0 ± 0.6
9 3.5 ± 1.0 4.4 ± 1.5 3.2 ± 0.4 4.9 ± 0.6 2.9 ± 0.5 3.9 ± 0.4

Square
( 20× 20 mm )

7 5.6 ± 2.4 10.7 ± 6.7 5.0 ± 0.6 11.6 ± 1.3 4.6 ± 0.6 11.3 ± 2.0
9 5.1 ± 2.0 6.7 ± 4.8 4.6 ± 0.6 7.5 ± 1.6 4.4 ± 0.6 6.1 ± 1.0

Elliptical
(r1 = 40 mm, r2 = 20 mm)

7 7.5 ± 2.0 30.1 ± 11.2 7.4 ± 1.1 26.1 ± 1.4 6.2 ± 0.7 17.4 ± 3.6
9 3.8 ± 1.7 5.7 ± 1.8 4.3 ± 0.5 6.0 ± 0.5 4.0 ± 0.7 5.6 ± 0.6

Crescent
(rout = 50 mm, rin = 40 mm)

7 6.2 ± 4.3 27.3 ± 7.1 7.6 ± 1.5 28.2 ± 5.1 7.2 ± 0.5 21.6 ± 4.0
9 5.8 ± 4.0 6.8 ± 6.2 5.1 ± 1.0 9.6 ± 1.6 4.5 ± 0.8 7.3 ± 1.8

Arbitrary 7 5.9 ± 2.6 33.1 ± 4.1 6.5 ± 0.5 39.2 ± 6.1 5.0 ± 0.2 28.6 ± 3.4
9 5.8 ± 2.5 9.0 ± 6.6 5.5 ± 0.6 11.2 ± 1.9 4.4 ± 0.4 7.7 ± 3.0

Fig. 11. Cross transfer pose estimation accuracy between the tested objects with feature combination 7. Transfer scores include (left) position RMSE in mm
and (right) orientation errors in degrees.

Fig. 12. Cross transfer pose estimation accuracy between the tested objects when including the initial grasp pose in the state (feature combination 9). Transfer
scores include (left) position RMSE in mm and (right) orientation errors in degrees.
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Fig. 13. An example of Conf. 7 feature state transition estimation with three
transition models over a test trajectory in C.

training over a circular object is sufficient for acquiring a
relatively good position accuracy for all objects. The orien-
tation, however, has more difficulty in generalization to more
complex objects. On the other hand, Figure 12 presents the
cross transfer accuracy when also including the initial pose
to the state (feature combination 9). Clearly, the inclusion of
the initial pose significantly improves generalization for both
position and orientation predictions, and yields low errors for
all objects.

B. Closed loop planning

In this section, we test the MPC closed loop control ap-
proach discussed in Section V-C. We first use the collected
data to train transition model (1) with feature combination
7. As discussed in Section V-A, the data collected for the
observation model is used to train a model ∆x̃t = f̃φ(xt,at)
and compare between GP, FC-NN and LSTM with k = 2
past states. The hyper-parameters in φ were optimized to
reduce transition error. We note that the transitions of the
model are made in feature space C while the pose accuracy is
computed after using the LSTM observation model presented
above. Figure 13 shows a usage example of the three transition
models in the feature state space over a test trajectory. Tracking
along the ground truth signals is best performed by the
LSTM model. Additionally, Figure 14 presents the mean error
(over the test data) of the three models in an open-loop
fashion for an horizon of up to 5.0 seconds. Note that the
prediction error is composed of the transition accuracy on top
of inherent errors of the observation model. The LSTM model
evidently provides better accuracy and is, therefore, used in the
following experiments.

We now observe the performance of the MPC-Critic over a
large set of goals in the workspace of the hand. The workspace
of the hand is crescent-shaped as illustrated in Figure 9.

Fig. 14. (left) Position and (right) orientation transition accuracy of the three
tested models. Predictions are performed in open-loop for an horizon of 50
steps (5.0 seconds).

TABLE III
ROLL-OUT RESULTS
Goal error (mm) Path len. (mm) Success rate

C
ir

cu
la

r
1
5
m
m OL 6.7 ± 2.0 15.4 ± 9.5 40%

HS 6.9 ± 2.9 19.0 ± 11.8 60%
MPC w/o critic 5.0 ± 2.5 36.8 ± 20.9 58%

MPC-Critic 4.7 ± 2.8 41.6 ± 29.8 70%
VS - 30.6 ± 16.8 73%

MPC-Vis - 41.2 ± 15.5 82%

E
lli

pt
ic

al

OL 7.8 ± 1.2 14.5 ± 1.0 38%
HS 7.1 ± 3.0 17.9 ± 10.7 56%

MPC w/o critic 7.0 ± 1.8 29.4 ± 14.2 60%
MPC-Critic 6.5 ± 2.3 33.5 ± 20.1 74%

VS - 36.6 ± 10.5 78%
MPC-Vis - 37.5 ± 13.4 80%

C
re

sc
en

t
OL 8.2 ± 1.1 16.0 ± 5.6 40%
HS 8.8 ± 3.1 28.7 ± 12.5 60%

MPC w/o critic 7.5 ± 2.0 31.2 ± 12.5 58%
MPC-Critic 7.3 ± 1.0 36.5 ± 22.4 70%

VS - 37.5 ± 14.2 70%
MPC-Vis - 39.5 ± 17.2 76%

Furthermore, previous work has shown that some goals in the
workspace, mostly near the boundaries, are harder to reach
due to the risk of getting stuck, slide or drop of the object
[14]. The MPC-Critic is implemented according to Algorithm
1 with horizon H = 10 and weight parameters w1 = 0.8 and
w2 = 0.2. We benchmark the MPC-Critic with three baseline
approaches: Open-loop (OL), HS and MPC without critic. For
the OL, we incorporate the MPC-Critic in an off-line manner
where a set of actions is planned to reach the goal from the
mean of all initial grasp locations in the data. Once the object
is grasped, the planned actions are rolled-out in open-loop.
The HS is implemented as described in Section V-B where
Kx = Ky = 200. The MPC without critic considers only the
first component in the sum of (3) with w1 = 1 and, therefore,
aims to shorten the path to the goal. Furthermore, we compare
our results to control when visual feedback is available: VS
as described in Section V-B and MPC with a vision-based
transition model. For the latter, termed MPC-Vis, we use a
transition model proposed in [10] where the state comprises
of the camera perceived pose and actuator torques. MPC-Vis is
implemented similar to MPC without critic. The experiment is
conducted by randomly sampling 50 poses in the workspace of
the hand and attempting to reach them after grasping the object
in an arbitrary initial grasp. A roll-out attempt is ended if the
object falls or the observation model predicts reaching to the
goal. Therefore, a roll-out success is considered if the object
reaches within 4 mm to the goal at the end of the attempt.
This goal threshold is chosen based to the accuracy limit of
combination 7 with LSTM exhibited in the pose estimation
results. For the non-visual methods, vision is used solely to
estimate and report the true error of reaching a goal.

Table III presents averaged results for roll-outs with all
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Fig. 15. Four roll-out examples where the circular, elliptical and crescent objects are manipulated between several intermediate goals (green markers) using
the MPC-Critic. The rolled-out path and position estimation are seen in red and cyan curves, respectively.

methods of the circular (15mm), elliptical and crescent objects.
The table shows the mean distance to the goal over all
trials after finishing the roll-outs. We first compare between
the four non-visual methods. MPC-Critic exhibits the lowest
error. In addition, the results show that MPC-Critic is able
to reach farther goals with higher success rate. The critic
has sparse data in regions which are harder to cross due to
high probability of dropping the object or actuator overload.
Hence, the critic has lower accuracy in those regions such that
the MPC-Critic inherently avoids them. In addition, the goals
were randomly sampled and the system is not guaranteed to be
able to reach them. Figure 15 shows roll-out demonstrations
with the MPC-Critic where the object must move between
several intermediate goals. The accuracies of the visual-based
methods, MPC-Vis and VS, are equal to the success tolerance
and, therefore, not reported. However and as expected, they
exhibit slightly higher success rates than MPC-Critic due to
more accurate pose feedback. Nevertheless, the results validate
the proposed approach and show feasible manipulations with
solely haptic feedback.

We have also conducted a peg-in-a-hole demonstration in
which the objects are manipulated within a confined cabinet
into slots. The positions of the slots relative to the hand
are assumed to be known. While not in our scope, further
work is required in order to sense the target hole, given
the general location, using the available haptic feedback.
Images of the demonstration are seen in Figure 1. Videos of
the demonstration and other experiments are included in the
supplementary video.

VII. CONCLUSIONS

In this letter, we have investigated the ability to track and
manipulate an object within a two-finger underactuated hand
solely based on haptics without relying on visual perception.
We explored the state representation of an observation model
using the kinesthetic information available to the hand along
with novel low-cost tactile fingers. This observation is valuable
since vision is often limited, i.e., working in an occluded
environment. Adding an initial pose glance at the moment of
grasping has shown to provide an additional accuracy improve-
ment. Additionally, we proposed a data-driven MPC approach
which utilized learnt observation and transition models to
reach desired goals within the workspace of the hand. The
MPC approach reasons about the accuracy of the observation
model using a critic and attempts to avoid erroneous regions.
Results have shown the ability to estimate the pose of several
test objects and manipulate them to desired goals with less than

5 mm accuracy. Moreover, generalization to various object was
shown feasible. The results validate that in-hand manipulation
is feasible with solely haptic feedback. However, the accuracy
achieved by the system may not be sufficient in more complex
tasks such inserting a key into a lock. These may require higher
resolution hardware. An interesting extension to the work may
include more intelligent exploration methods that can increase
data quality and be more sample-efficient.

REFERENCES

[1] J. Bae, S. Park, J. Park, M. Baeg, D. Kim, and S. Oh, “Development of a
low cost anthropomorphic robot hand with high capability,” in IEEE/RSJ
Int. Conf. on Intel. Rob. and Sys., 2012, pp. 4776–4782.

[2] A. M. Dollar and R. D. Howe, “The highly adaptive sdm hand: Design
and performance evaluation,” The International Journal of Robotics
Research, vol. 29, no. 5, pp. 585–597, 2010.

[3] Y. Bai and C. K. Liu, “Dexterous manipulation using both palm and
fingers,” pp. 1560–1565, 2014.

[4] R. Michalec and A. Micaelli, “Stiffness modeling for multi-fingered
grasping with rolling contacts,” in IEEE-RAS International Conference
on Humanoid Robots, 2010, pp. 601–608.

[5] L. U. Odhner and A. M. Dollar, “Dexterous manipulation with underac-
tuated elastic hands,” in IEEE Int. Conf. on Rob. and Aut. IEEE, May
2011, pp. 5254–5260.

[6] ——, “Stable, open-loop precision manipulation with underactuated
hands,” Int. J. of Rob. Res., vol. 34, no. 11, pp. 1347–1360, Sep 2015.

[7] B. Calli and A. M. Dollar, “Vision-based precision manipulation with
underactuated hands: Simple and effective solutions for dexterity,” in
IEEE/RSJ Int. Conf. on Intel. Rob. and Sys., 2016, pp. 1012–1018.

[8] B. Calli, K. Srinivasan, A. Morgan, and A. M. Dollar, “Learning modes
of within-hand manipulation,” in IEEE International Conference on
Robotics and Automation (ICRA), May 2018, pp. 3145–3151.

[9] R. Ozawa, S. Arimoto, S. Nakamura, and J.-H. Bae, “Control of an
object with parallel surfaces by a pair of finger robots without object
sensing,” IEEE Trans. on Robotics, vol. 21, no. 5, pp. 965–976, 2005.

[10] A. Sintov, A. S. Morgan, A. Kimmel, A. M. Dollar, K. E. Bekris, and
A. Boularias, “Learning a state transition model of an underactuated
adaptive hand,” IEEE Robotics and Automation Letters, vol. 4, no. 2,
pp. 1287–1294, April 2019.

[11] J. Borras and A. M. Dollar, “A parallel robots framework to study
precision grasping and dexterous manipulation,” in IEEE Int. Conf. on
Rob. and Aut. IEEE, May 2013, pp. 1595–1601.

[12] A. Sintov, A. Kimmel, K. Bekris, and A. Boularias, “Motion planning
with competency-aware transition models for underactuated adaptive
hands,” in IEEE Int. Conf. on Rob. & Aut., Paris, 2020, pp. 7761–7767.

[13] A. Kimmel*, A. Sintov*, B. Wen, A. Boularias, and K. Bekris, “Belief-
space planning using learned models with application to underactuated
hands,” in Int. Symposium on Robotics Research, Hanoi, 2019.

[14] A. S. Morgan, W. G. Bircher, and A. M. Dollar, “Towards generalized
manipulation learning through grasp mechanics-based features and self-
supervision,” IEEE Transactions on Robotics, vol. 37, no. 5, pp. 1553–
1569, 2021.

[15] A. S. Morgan, K. Hang, and A. M. Dollar, “Object-agnostic dexterous
manipulation of partially constrained trajectories,” IEEE Robotics and
Automation Letters, vol. 5, no. 4, pp. 5494–5501, 2020.

[16] B. Wen, C. Mitash, S. Soorian, A. Kimmel, A. Sintov, and K. E.
Bekris, “Robust, occlusion-aware pose estimation for objects grasped
by adaptive hands,” in IEEE Intl. Conf. on Rob. & Aut., 2020.



12

[17] A. S. Morgan, B. Wen, J. Liang, A. Boularias, A. M. Dollar, and
K. Bekris, “Vision-driven compliant manipulation for reliable, high-
precision assembly tasks,” in Robotics: Science and Systems, 2021.

[18] V. Fonseca, T. E. Alves de Oliveira, and E. Petriu, “Estimating the
orientation of objects from tactile sensing data using machine learning
methods and visual frames of reference,” Sensors, p. 2285, 2019.

[19] J. Carter and D. Fourney, “Research based tactile and haptic interaction
guidelines,” in Guidel. On Tactile and Hap. Inter., 01 2005, pp. 84–92.

[20] G. Rouhafzay and A. Cretu, “Object recognition from haptic glance at
visually salient locations,” IEEE Transactions on Instrumentation and
Measurement, vol. 69, no. 3, pp. 672–682, 2020.

[21] S. Pohtongkam and J. Srinonchat, “Tactile object recognition for hu-
manoid robots using new designed piezoresistive tactile sensor and
dcnn,” Sensors, vol. 21, no. 18, 2021.

[22] M. Liu, Y. Zhang, J. Wang, N. Qin, H. Yang, K. Sun, J. Hao, L. Shu,
J. Liu, Q. Chen, P. Zhang, and T. H. Tao, “A star-nose-like tactile-
olfactory bionic sensing array for robust object recognition in non-visual
environments,” Nature Communications, vol. 13, no. 79, 2022.

[23] C. Chorley, C. Melhuish, T. Pipe, and J. Rossiter, “Development of
a tactile sensor based on biologically inspired edge encoding,” in
International Conference on Advanced Robotics, 2009, pp. 1–6.

[24] E. Donlon, S. Dong, M. Liu, J. Li, E. Adelson, and A. Rodriguez, “Gel-
slim: A high-resolution, compact, robust, and calibrated tactile-sensing
finger,” IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 1927–1934, 2018.

[25] N. Lepora and J. Lloyd, “Optimal deep learning for robot touch: Training
accurate pose models of 3d surfaces and edges,” IEEE Robotics and
Automation Magazine, vol. 27, no. 2, Apr. 2020.

[26] B. Calli and A. M. Dollar, “Vision-based model predictive control for
within-hand precision manipulation with underactuated grippers,” in
IEEE International Conference on Robotics and Automation, May 2017,
pp. 2839–2845.

[27] B. Calli, A. Kimmel, K. Hang, K. Bekris, and A. Dollar, “Path planning
for within-hand manipulation over learned representations of safe states,”
in International Symposium on Experimental Robotics, Buenos Aires,
Argentina, 2018.

[28] Z. Kappassov, J.-A. Corrales, and V. Perdereau, “Tactile sensing in
dexterous robot hands — review,” Robotics and Autonomous Systems,
vol. 74, pp. 195–220, 2015.

[29] J. T. Muth, D. M. Vogt, R. L. Truby, Y. Mengüç, D. B. Kolesky, R. J.
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