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Abstract

Robotic manipulation of a wire by its ends requires rapid reasoning of its shape in real-time. A recent development

of an analytical model has shown that sensing of the force and torque on one end can be used to determine its shape.

However, the model relies on assumptions that may not be met in real world wires and do not take into account

gravity and non-linearity of the Force/Torque (F/T) sensor. Hence, the model cannot be applied to any wire with

accurate shape estimation. In this paper, we explore the learning of a model to estimate the shape of a wire based

solely on measurements of F/T states and without any visual perception. Visual perception is only used for off-line

data collection. We propose to train a Supervised Autoencoder with convolutional layers that reconstructs the spatial

shape of the wire while enforcing the latent space to resemble the space of F/T. Then, the encoder operates as a

descriptor of the wire where F/T states can be mapped to its shape. On the other hand, the decoder of the model is the

inverse problem where a desired goal shape can be mapped to the required F/T state. With the same collected data, we

also learn the mapping from F/T states to grippers poses. Then, a motion planner can plan a path within the F/T space

to a goal while avoiding obstacles. We validate the proposed data-based approach on Nitinol and standard electrical

wires, and demonstrate the ability to accurately estimate their shapes.
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1. Introduction

The manipulation of elastic wires is considered a dif-

ficult task to operate in industrial environments due to

the inability to reason about their shape in real time

[1]. Indeed, manipulation tasks in industrial applica-

tions such as assembly lines commonly handle only

rigid objects. Manipulation of wires, on the other hand,

remains in most cases to be operated manually. Rea-

soning about the shape of a wire along with manipu-

lation capabilities have various applications including

cable routing in automotive production lines [2], surgi-

cal suturing [3], knot tying [4], hot wire carving [5] and

aerial manipulation of cables [6]. Indirectly, the foun-

dations of this work may be applied to cloth folding [7],

protein folding [8], tissue manipulation [9, 10], hyper-

redundant robots [11] and multi-robot sheet manipula-

tion [12].
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The problem of estimating the shape of an elastic rod

has been addressed with various approaches. In [13], a

simulated discrete elastic rod model is fitted on data ob-

tained from camera images. Similarly, a Fourier series

was used to parameterize a cable segmented from an

image [14]. In a more recent work, the instabilities of a

rod were analyzed by identifying markers with a camera

and compared to a numerical simulation [15]. Seminal

work by Bretl and McCarthy [16] relied on a descrip-

tion of elastic rods in equilibrium as local solutions to

a geometric optimal control problem and showed that

the configuration space of the wire is a six-dimensional

smooth manifold. The configuration space was also

shown to be represented by the Force and Torque (F/T)

at the base of the rod. Later, Borum et al. [17] tracked

fiducial markers on a planar wire with a camera and fit-

ted them to the model of Bretl and McCarthy to estimate

the wire’s shape. However, visual perception and image

segmenting of thin objects such as a wire in a cluttered

environment is a challenging task. Moreover, relying

on continuous visual feedback limits the performance

of various tasks in which visual uncertainty (e.g., poor
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lighting or shadows) or occlusion may occur. This may

include manipulating the wire within a confined space

such as a vehicle frame.

As opposed to vision, using load measurements at

the tip of the wire does not require a line-of-sight. The

work in [18] demonstrated the estimation of a thin elas-

tic strip using a force sensor and based on a discretized

Kirchhoff elastic rod model. The work of Takano et al.

[19] relied on a discrete model and measured force and

torque to estimate the shape of a thin strip. These ap-

proaches are highly dependent on the resolution of the

discretization and directly proportional to computation

time. Recent work by the authors has proposed a full

framework for real-time shape estimation and control

of a wire solely using an F/T sensor and without any

visual feedback [20]. The work, however, relied on the

analytical model devised by Bretl and McCarthy. Since

the model does not take into account gravitation, non-

linearity of the sensors or other uncertainties, a Neural-

Network (NN) was included to calibrate the F/T sensor

to map between real sensed loads and theoretical ones

defined in the model. However, such process requires

solving the inverse problem for each sample where the

theoretical load is computed given a measured shape.

The computational complexity of such process is high

and may take a very long time. Once the F/T sensor has

been calibrated, real-time estimation requires repeated

solving of a system of ordinary differential equations to

find the corresponding shape of the rod. Each solution

is computationally expensive and the update frequency

remains low [21]. Hence, real-time applications may be

limited.

To cope with the computational complexity imposed

by wire shape computation, previous work has pro-

posed to pre-compute a roadmap within the free con-

figuration space of the wire as part of a path planning

problem [21]. However, the roadmap, acting as a de-

scriptor of the wire, represented only a small subset of

possible wire configurations. In this paper, we explore

data-based approaches to estimate the shape of the wire

given an F/T measurement. A trained Neural-Network

(NN) can be an higher-capacity descriptor of the wire

enabling rapid estimations of its shape.

In this work, we investigate whether a data-based

model can be learned and used for shape estimation of

the wire based on simple sensing. We propose to use the

Supervised and Convolutional Autoencoder (SnCAE)

to learn wire shapes. We rely on the revelation of the

work by Bretl and McCarthy [16] where the shape of

the wire can be represented in a low-dimension space.

An F/T measurement is then assumed to be an en-

coded state representation of the wire and can poten-

Figure 1: Shape estimation of a Nitinol elastic wire in two different

configurations using only a Force/Torque sensor on one gripper. The

wire configuration on the right is approximated and visualized in sim-

ulation (red curve), and compared to markers tracked (white markers)

with a motion capture system.

tially be mapped to its explicit shape. Hence, we train

the SnCAE which is a Supervised Autoencoder [22]

constructed with convolutional layers. The SnCAE re-

constructs the shape of the wire, based on collected data,

while also supervising the latent space to match corre-

sponding F/T states. Convolutional layers are included

in order to embed the spatial shape of the wire and ease

the learning. Once trained, the decoder of the SnCAE

is the shape estimator and can rapidly map F/T states

to wire shapes. Figure 1 shows an example where a

trained decoder is used for real-time estimation of the

spatial shape of a wire based on measured F/T and with-

out visual perception. Vision is used solely for collect-

ing training data. We test our approach on Nitinol and

standard electrical wires.

In addition to the decoder, the encoder of the SnCAE

provides the solution of the inverse problem where an

F/T state of the wire can be extracted from a desired

shape. Hence, planning in the space of F/T states can

be performed while the goal state is extracted using the

encoder from a measured shape (e.g., given cable rout-

ing channel). Similarly, wire shapes that result in col-

lision with obstacles can be mapped using the encoder

to F/T states and avoided in planning. To demonstrate

planning with the learned model, the same training data

is used to train an NN to map an F/T state to the corre-

sponding pose of one gripper relative to the first. Then, a

motion planner is implemented where the encoder iden-

tifies goal F/T states and the decoder acts as a collision

checker. To summarize, the contributions of this work

are as follows:

• We propose a data-based framework to estimate
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the shape of a wire based solely on F/T measure-

ments.
• An NN architecture is proposed based on the Su-

pervised Autoencoder. The Autoencoder, com-

posed of an encoder and decoder, is forced to em-

bed the F/T space of the wire in the latent space.

The decoder can be used for mapping F/T sensing

to the shape of the wire.
• In addition to the decoder, the encoder provides

a solution to the inverse problem where a desired

shape of the wire is mapped to the required F/T

state.
• Convolutional layers are used to embed the spatial

shape of the wire in the model.
• Unlike prior work, the proposed model embeds un-

certainties such as non-linearity of the F/T sensor,

initial wire curvature and non-homogeneity.
• An additional model maps F/T sensing to the pose

of the second gripper relative to the base gripper.
• The proposed models are demonstrated in path

planning and manipulation of Nitinol and electric

wires.
• The work shows that F/T measurements can be

mapped to wire shapes even if the wire does not

cope with the assumptions made by Bretl and Mc-

Carthy [16], e.g., we learn mapping for a non-

homogeneous electric wire with initial curvature.

To the best of the authors’ knowledge, this is the first at-

tempt to fully describe the shape of a wire using a data-

based model and based on F/T measurements. While

additional work must be done for generalization, our

approach is a first step towards accurate description of

wires without dependence on limited analytical models.

2. Related Work

In this section, we survey some topics related to the

manipulation of deformable objects and, in particular,

elastic wires. The manipulation of deformable objects

has been widely researched [23]. Early work used finite

element modeling to study the control of static defor-

mations of sheet metal parts handled by two manipu-

lators [24]. In [23], position control was used to ma-

nipulate a flexible object with multiple robots while ap-

plying vibration suppression at each contact. Different

approaches considered the deformable object as a con-

trolled dynamic system [25, 26].

Robotic manipulation of a wire was traditionally con-

sidered in the configuration space of its two ends or of-

ten of the two grippers grasping them. However, mul-

tiple solutions of wire shape exist for a single configu-

ration of the ends. In addition, a representation for the

shape of the wire has infinite dimension. These chal-

lenges hinder the motion planning of a wire. Early work

on path planning for elastic wires suggested the sam-

pling of gripper displacements and using numerical sim-

ulations to approximate their effect on the wire [27, 28].

Later work relaxed gripping points constraints while

planning a collision-free path for a sphere around a pre-

defined central grip point [29]. Different approaches

use numerical methods to describe the curvature of the

deformed wire [30, 31]. However, the above meth-

ods are computationally expensive making them hard

to perform well. Simplification of the model for the de-

formed object is another approach where a sequence of

rigid masses with springs is used to represent the ob-

ject [32, 33]. In such approach, the solution is highly

sensitive to the approximation which in turn affects the

quality of the planning.

In all the cited approaches, a feasible procedure to

derive the free configuration space of a wire was not

clear at that time. As discussed in previous section,

Bretl and McCarthy later showed that the configuration

space of the wire, i.e. the set of all equilibrium configu-

rations, is a six-dimensional smooth manifold [16, 34].

They also provided a computational test to determine

whether an equilibrium configuration on the manifold

is stable or not. This enabled the use of sampling-based

planning algorithms [35] to be used in which configu-

rations of the wire could be sampled directly. Further

research following the work of Bretl and McCarthy ex-

plored additional planning properties in the free config-

uration space of the wire [36, 37]. An important work

has provided the insight that the free configuration space

is path-connected and a semi-analytical feasible path

can easily be found [38].

While making a breakthrough, the work of Bretl and

McCarthy imposed strong assumptions for the wire to

be straight in the undeformed state and ignored the ef-

fects of gravity. Nevertheless, recent work have shown

that adding the Darboux vector to the model can be used

to include distributed forces such as gravity and initial

wire curvature [39]. The approach was demonstrated

on short rubber rods with low gravity influence. In ad-

dition, the approach remains to be based on an analyt-

ical model with no ability to cope with various model

uncertainties such as gripper inaccuracies, intrinsic non-

linearity of the sensor and non-homogeneity of the wire.

While less related to the presented work, it is also

worth mentioning additional work related to perception

and manipulation of linear elastic objects. Recent work

demonstrated model-based control for manipulation of

ropes on a plane with a single robot arm [40]. Image

perception is used for estimating the state of the rope
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and the robot can grasp any point along it for a manip-

ulating action. Similar work used synthetic depth im-

ages to train a policy for such manipulation on a plane

[41]. In [42], a data-driven model was proposed for the

dynamics of a rope in various manipulation tasks. The

state definition of a rope was degraded to some small

set of points on it while not putting state estimation

in scope. In a different work, shape estimation of de-

formable objects was obtained through RGB-D percep-

tion in an occluded scene [43].

3. Background

We briefly present the theoretical background from

Bretl and McCarthy [16] set to be the baseline to our

work. Given a wire of length L, the following model

assumes that it is straight in the undeformed configu-

ration with high enough stiffness in which the effects

of gravity are neglected. Using t ∈ [0, L] to denote arc-

length along the wire, the position and orientation of the

wire at arc-length t are described by a continuous map

q : [0, L]→ S E(3) given by

q(t) =
[
R(t) p(t)

0 1

]
, (1)

where R(t) : [0, L] → S O(3) and p(t) : [0, L] → R
3 are

curvature and position functions, respectively. Illustra-

tion of the wire is seen in Figure 2. According to the

Kirchhoff model, a wire is unshearable and inextensible

while allowed to bend or twist [44]. These are enforced

by requiring q to satisfy

q̇ = q
(

û e1

0 0

)
, (2)

for some function u : [0, L] → R
3, where overdots de-

note differentiation with respect to t, the map̂: R3 →
so(3) satisfies a × b = âb for all a, b ∈ R

3, and

e1 = [1 0 0]T .

Both ends of the wire are held by two robotic arms

with grippers. The position and orientation of each

point q(t) on the wire is represented relative to the base
gripper at t = 0 such that q(0) = I, where I ∈ S E(3) is

the identity matrix. This establishes the initial condition

for differential equation (2).

We define the set A ⊂ R
6 by

A = {a ∈ R6 : (a2, a3, a5, a6) � (0, 0, 0, 0)} (3)

The set A is simply R
6 with a two-dimensional plane

removed. Each point in A corresponds to an equilib-

rium configuration of the wire and a local minimum of

the total elastic energy of the wire. Proof for this can

Figure 2: Illustration of an elastic wire (gray).The shape of the wire

is given by the position and curvature functions p(t) ∈ R
3 and

R(t) ∈ S O(3), respectively, where t ∈ [0, L] is the arc-length along

the wire. The position and orientation of each point along the wire is

represented relative to the base gripper at t = 0. In addition, the pose

of the second gripper at t = L is given by b ∈ B ⊂ S E(3).

be viewed in Theorem 5 of Bretl and McCarthy [16].

Thus, one can solve the following six ordinary differen-

tial equations

dμ1

dt
=
μ3μ2

c3

− μ2μ3

c2

dμ4

dt
=
μ3μ5

c3

− μ2μ6

c2

dμ2

dt
= μ6 +

μ1μ3

c1

− μ3μ1

c3

dμ5

dt
=
μ1μ6

c1

− μ3μ4

c3

dμ3

dt
= −μ5 +

μ2μ1

c2

− μ1μ2

c1

dμ6

dt
=
μ2μ4

c2

− μ1μ5

c1
(4)

on the interval t ∈ [0, L] with the initial condition μ(0) =

a for a ∈ A. In addition, c1 > 0 is the torsional stiffness

of the wire and c2, c3 > 0 are the bending stiffnesses.

Furthermore, u1 : [0, L] → R and u2, u3 : [0, L] → R

are the twisting and bending strains along the wire, re-

spectively, such that u = (u1, u2, u3)T and ui = μi/ci for

i = 1, 2, 3. Solving (2) with the resulting u produces

an equilibrium shape of the wire, denoted by the pair of

functions (q,u). Each (q,u) and the corresponding μ are

completely defined by the choice of a ∈ A. Therefore

and in practice, A serves as the configuration space of

the wire. Since we care only about the shape of the wire,

we define map p(t) = Φ(a) where p(t) is extracted from

q according to (1). Map Φ is injective, i.e., for each p
there exists a unique a ∈ A. In addition, one can define

subspace B ⊂ S E(3) which is the space of poses of the

second gripper and is given by b = q(L) ∈ B where q
relates to some a.

Function μ : [0, L] → R
6 is interpreted as the vector

of internal forces and torques along the wire. Hence,

one can describe the force and torque at point t along

the wire as

f(t) = (μ4(t), μ5(t), μ6(t))T (5)

τ(t) = (μ1(t), μ2(t), μ3(t))T , (6)

respectively, where μ j(t) is the jth component of μ(t)
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[16]. Since Φ is injective, any equilibrium configura-

tion a = μ(0) is completely defined by the force f(0)

and torque τ(0) at the base gripper. In other words, by

solely measuring the load exerted on the gripper using

an F/T sensor, one can directly acquire configuration a
and, using Φ(a), solve for the shape of the wire p. In

addition, the load measurement can be used to extract

the expected pose of the second gripper b with respect

to the base gripper.

4. Method

4.1. Problem Statement
An elastic wire of length L and mechanical coeffi-

cients c = (c1, c2, c3)T is held by a dual-arm robotic

system. Furthermore, a Force/Torque (F/T) sensor is

mounted on one arm and measures the load a ∈ AFT

exerted by the wire where AFT is the space of mea-

sured wire F/T states. Inspired by the analytical model

presented in the previous section, we hypothesize that

mapping from F/T measurements to wire shape can be

learned from collected data while taking uncertainties

into account. Therefore, we explore the learning of a

discrete map Γ : AFT → R
3 × . . . × R

3. Hence, given

a measurement a ∈ AFT of the F/T sensor, the map will

output a set of m points Γ(a) = {p1, . . . ,pm} along the

wire where p j = p(
j

m ) ∈ R3 for j = 1, . . . ,m.

4.2. Pose estimation using the Analytical Model
As discussed in previous work [20], a measurement

a of the F/T sensor cannot directly be applied to extract

the shape with model Φ(a). Many uncertainties such as

gravitation, gripper inaccuracies, intrinsic non-linearity

of the sensor and non-homogeneity of the wire, were

not reflected by the assumptions of the model. Hence,

the previous work proposed an NN calibration model

to map a measured F/T load a j to the theoretical wire

configuration a j. To do so, a dataset is collected by

manipulating a wire with known length and coefficients

c through various configurations while recording, for

each, the F/T measurement a j and the corresponding

set of V marker locations F j = {p j,1, . . . ,p j,V }. Point

p j,k ∈ R
3 is the spatial position of marker k relative to

the base gripper measured with a motion capture sys-

tem. For each sample F j, we solve the inverse problem

a j = Φ
−1(F j) to compute the theoretical wire configu-

ration a j. This was done by solving the following mini-

mization problem

a j = arg min
a

V∑
k=1

‖p j,k − xk(a)‖2 (7)

where xk ∈ R
3 is the closest point to p j,k on a wire

p = Φ(a). Problem (7) is non-linear and therefore was

solved with a meta-heuristic global optimizer such as

Particle Swarm Optimization (PSO) [45]. The calibra-

tion model is, then, a NN model ψ trained with dataset

{(a j, a j)
N
j=1
}where N is the number of collected samples.

Given F/T measurement ai, the shape of the wire is then

computed with p(t) = Φ(ai) for ai = ψ(ai).

Solving inverse problem (7) for each sample is com-

putationally expensive. Furthermore, in order to acquire

a fine calibration model, one must collect a large amount

of samples and with high variance. Such process may

take very long time while insufficient data yields low ac-

curacy as will be demonstrated in the experiments. Even

with enough data points, the model may not sufficiently

represent the behaviour of the query wire due to various

non-modeled properties. In this work, we take a differ-

ent approach where we directly map F/T measurements

to wire shapes and, by that, incorporate all uncertain-

ties in the model. Therefore, explicit knowledge of co-

efficients c is not required nor the tedious solution of

inverse problem (7).

4.3. Data Collection
Training data is collected by sampling M wire

shapes along with their corresponding F/T measure-

ments. Sampling a continuous representation of the

wire shape can be done in several ways including shape

segmentation from RGB cameras or from a depth cam-

era if the wire is thick enough. In this work, a motion

capture system tracks V reflective markers fixed along

the wire. It is noted that the motion capture system is

used only for data labeling while deployment is done

solely based on F/T sensing. Furthermore, while the ap-

proach provides a coarse resolution along the wire, the

marker positions are acquired with high accuracy. Sam-

ple j taken from the system is in the form (a j,F j) where

F j = {p j,1, . . . ,p j,V }.
To provide a finer representation of the wire given F j,

we search for a parametric curve function f : R → R
3

that would represent the wire with higher resolution. In

practice, parametric curve

f(t) = ( fx(t), fy(t), fz(t))T (8)

could be represented by polynomial functions of degree

h such that

fx(t) =
h∑

k=0

sx,ktk, fy(t) =
h∑

k=0

sy,ktk, fz(t) =
h∑

k=0

sz,ktk

where s j,k are coefficients to be optimized. Curve func-

tion f(t) that best fits points F j can be obtained by the
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least-squares method and is the solution of

min
υ

V∑
k=1

‖p j,k − f(t)‖2 (9)

where υ is the vector of all polynomial coefficients in

f(t). Problem (9) can be solved rapidly with parametric

curve fitting [46]. In brief, an iterative algorithm asso-

ciates value ti to pi by locally minimizing ‖pi − f(ti)‖2
and ensuring that ti < ti+1. With the acquired para-

metric curve fit, we generate m equally spaced points

P j = {p1, . . . ,pm} along the wire (m � V). These

m points are considered an higher resolution represen-

tation of the sampled wire and further used for learn-

ing map Γ. Finally, the generated training data consists

of M samples in the form D = {(ai,Pi)}Mi=1. For each

ai sample, we also record the corresponding pose of

the second gripper bi. Hence, we have another dataset

V = {(ai,bi)}Mi=1 for motion planning as will be dis-

cussed later.

4.4. Learning Model: Supervised and Convolutional
Autoencoder

A Fully-Connected NN (FC-NN) model can be di-

rectly trained with D to acquire an approximation of Γ.

In such case, the input would be six-dimensional while

the output is the flattening of P to a vector of dimen-

sion 3m. However, such vector representation loses the

spatial relationship between coordinates along the wire

and may affect accuracy. Alternatively, we propose to

incorporate convolutional layers in order to embed spa-

tial computation in the model and allow parameter shar-

ing. On top of that, we train a Supervised Autoencoder

(SAE) model [22] to augment the learning and acquire

an inverse solution Γ−1 along the way. Hence, we fur-

ther describe the architecture of the proposed Super-

vised and Convolutional Autoencoder (SnCAE) to learn

wire shape representation.

A standard Autoencoder (AE) is a neural-network

aimed to find a lower-dimensional embedding of some

data, i.e., dimensionality reduction [47]. AE is trained

to reconstruct the input at the output through an encoder

and a decoder. The encoder is used to identify embed-

ded information in the data and compress it to a latent

representation z ∈ Rd where dimension d is lower than

the one of the input data. The decoder, on the other

hand, reconstructs the original data from the latent rep-

resentation. AE is normally trained to reconstruct input

data X by minimizing the objective function ‖X − X′‖2
where X′ is the output of the decoder. AE is capable

of learning complex non-linear relations where simpler

models of dimensionality reduction under-perform.

As mentioned, we preserve the spatial representation

of the wire by having the input and reconstructed output

to the encoder and decoder, respectively, as m × 3 ar-

rays (each row is a point along the wire). Therefore, the

input to the encoder passes through a convolution with

an mc × 1 kernel yielding a convolutional layer of size

m × 3 × ma. The data then passes through a set of three

fully-connected layers of size 3m·ma×1, mb×1 and 6×1

as seen in Figure 3. The latent space is six-dimensional

to match the size of the F/T state. The encoder and de-

coder are mirrored while the output of the decoder goes

through a de-convolutional layer of size mc × 1 yielding

an m × 3 array. ma, mb and mc are hyper-parameters to

be further optimized. Therefore, the reconstruction loss

is given by

Jr = ‖P − P ′‖2. (10)

While the AE is an unsupervised method, SAE is a

variation of AE where the model also supervises the rep-

resentation of the latent space. Based on prior work dis-

cussed above, the latent representation of a wire shape

is known to be six-dimensional. Hence, we set the latent

layer in the AE to be d = 6, i.e., z ∈ R
6. Furthermore,

we add a soft constraint on the latent space to minimize

the distance to a ∈ AFT . Hence, we formulate a latent

loss value in the form of

Ja = ‖z − a‖2. (11)

Additionally and for regularization, for each batch of

data, we compare the reconstruction of P with either

using z or a in the decoder. Consequently, we train the

SnCAE to minimize a combined loss function

J = Jrz + Jra + wJa (12)

where Jrz and Jra are the reconstruction loss when ap-

plying z and a to the decoder, respectively. Scalar w > 0

is a tunable weight. An illustration of the SnCAE is

given in Figure 4. Preliminary analysis has shown that

adding Jra to the loss improves accuracy by approxi-

mately 25%. A trained SnCAE with minimal loss J
can reconstruct wire shape data while giving a physical

and practical meaning to the latent space.

The trained SnCAE has two usages as seen in Fig-

ure 5. First, the decoder is the approximated mapping

Γ which maps a measured ai to the spatial shape of the

wire Pi. In other words, we can use the decoder as a

shape estimator based on F/T sensing at the base grip-

per. Furthermore, the encoder provides a fast inverse so-

lution instead of problem (7), i.e., ai = Γ
−1(Pi). There-

fore, the encoder can be exploited to estimate the re-

quired F/T load at the base gripper, i.e., wire state in

AFT , based on a desired shape of the wire.
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Figure 3: Convolutional layers constructing the encoder and decoder

Figure 4: Framework of the Supervised and Convolutional Autoencoder (SnCAE).
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Figure 5: The usages of the trained models given measurements from

a grasped wire. The decoder of the SnCAE is used to map an F/T
measurement to the shape of the wire, i.e., Pi = Γ(ai); The encoder of

the SnCAE solves the inverse problem and maps a measured shape of

the wire to an estimated F/T load at the base gripper, i.e., ai = Γ
−1(Pi);

Model Λ approximates the pose of the second gripper given an F/T
measurement, i.e., bi = Λ(ai).

We note that an NN architecture similar to the de-

coder of the SnCAE, termed Decoder CNN (D-CNN),

can be trained independently as an alternative to the

SnCAE. In D-CNN, model Γ is trained directly with-

out the encoder to map an F/T measurement ai to wire

shape Pi as seen in Figure 6. Hence, the model is trained

to minimize loss

JD = ‖Pi − Γ(ai)‖2. (13)

However, D-CNN provides only shape estimation while

the SnCAE provides both shape estimation and inverse

model within the same training. The D-CNN will also

be analyzed in the experiments.

4.5. Motion planning over F/T states
A wire configuration ai ∈ A is given along with its

corresponding second gripper pose bi ∈ B. We define an

homogeneous transformation matrix M ∈ S E(3) with

δx ∈ R
3 and exponential coordinates y ∈ R

3 and δθ ∈
[0, π) such that

M(δb) =

[
eyδθ δx
0 1

]
for δb =

(
yδθ
δx

)
. (14)

Matrix M is defined to map between two configurations

in B such that

bi+1 = biM(δb) (15)

Figure 6: Architecture of the Decoder CNN (D-CNN) used as a base-

line comparison.

where perturbation to bi+1 will result in wire configura-

tion ai+1. From Theorem 7 and equation (37) in [16],

we get that

δb ≈ J(L)δa (16)

where δa = ai+1−ai. Matrix J(L) is the Jacobian relying

on the solution of the above ordinary differential equa-

tions and is detailed in [20, 21]. Equation (16) states

that matrix J(L) contains information about the relation-

ship between small changes in A and small changes in

B. Therefore and given a desired ai+1 in the vicinity of

ai, the required perturbation δa in A can be obtained.

Then, by solving (16), one can use map (15) to compute

the required perturbation in B in order to move a wire

from configuration ai to ai+1.

A data-based approach and a learned map Γ do not

enable the extraction of an explicit representation of

the Jacobian. Furthermore, the non-linearity of the F/T

sensor does not guarantee that perturbation δa can be

mapped to the same δb for any ai ∈ AFT . Alternatively,

we propose to directly learn mapping from ai to bi, i.e.,

Λ : AFT → B. Once having map Λ, we can extract

the required gripper perturbation δbi from bi = Λ(ai) to

bi+1 = Λ(ai+1) according to (14)-(15). With dataset V ,

an FC-NN is trained to learn map bi = Λ(ai) (Figure

5). It is noted that map Γ can only provide the position

of the second gripper while Λ provides the full pose in

S E(3).

Matrix bi ∈ S E(3) contains a rotation matrix Rbi

and the position vector. While the latter is easy to en-

code, direct encoding of rotation matrices for NN train-

ing cannot be done while maintaining orthonormality.

Hence, we encode bi with a nine-dimensional vector by

flattening the position vector along with two columns

(v1, v2) of the matrix. Reconstruction of the rotation

matrix Rbi
given output (v1, v2) from the NN is done

8



using the Gram–Schmidt process [48] according to

w1 =
v1

‖v1‖
u2 = v2 − (w · v2)w1

w2 =
u2

‖u2‖
Rbi
= [w1 w2 w1 × w2] .

Model Λ could be used to plan motion to a de-

sired goal as follows. Given a wire shape goal Pg, the

F/T state goal is the solution of the inverse problem

ag = Γ
−1(Pg) computed with the encoder of the SnCAE.

A motion planner would output a continuous path γ :

[0, 1] → AFT from the current start γ(0) = as ∈ AFT to

a desired one γ(1) = ag ∈ AFT . Furthermore, decoder

mapping Γ is used as a collision checker where shapes

of candidate F/T states are validated to be collision free.

We check wire collision with obstacles or with the robot

and wire self-collision. A sampling-based motion plan-

ner can then be used for finding a collision-free path

[35]. In this work, we employ the asymptotically opti-

mal variant of the Rapidly-exploring Random Tree, i.e.,

RRT∗ [49]. The RRT∗ planner finds a path from as to

ag while minimizing path length in AFT . Once path γ is

acquired, a step from ai to ai+1 along the path is trans-

lated to perturbation command δbi of the second gripper

from bi = Λ(ai).

5. Experiments

Our experiments are based on a setup comprised of

the Yaskawa Motoman SDA10F dual-arm robot seen in

Figure 7. A six-axis F/T sensor (Bota SensONE) with

a gravity compensation module was mounted on its left

arm. Furthermore, chuck grippers on both arms fix the

wires. A set of V = 11 reflective markers was posi-

tioned along the installed wire so that a motion capture

system is able to provide ground-truth measurements of

its shape in real-time. The system is controlled using

the Robot Operating System (ROS) over an Ubuntu ma-

chine. Videos of the experiments and demonstration can

be seen in the supplementary material.

5.1. Shape estimation analysis
We evaluate shape estimation on two wires seen in

Figure 8: a Nitinol wire of 2 mm diameter and 820 mm

length, and a standard electrical wire of 3 mm diame-

ter and 500 mm length. The electrical wire does not

meet the ground assumptions of [16] and was shown

in [20] to yield large approximation errors when using

the analytical model. Data was collected as discussed

Figure 7: Experimental setup based on a dual-arm robot.

Figure 8: Electrical (top) and Nitinol (bottom) wires used in the ex-

periments.

Table 1: Results for Nitinol and Electric wires shape estimation using

various models

Model Mean error (mm)

Nitinol

Analytical model [20] 37.14±16.48

FC-NN 12.16±5.26

SnCAE (with Decoder) 10.70±0.25

D-CNN 11.20±0.17

Electric

Analytical model [20] 56.29±19.18

FC-NN 28.2±6.12

SnCAE (with Decoder) 22.6±0.57

Table 2: Computation time for Nitinol and Electric wires shape esti-

mation using various models

Model Comp. time (msec)

Analytical model [20] 72.22±11.40

FC-NN 0.18±0.19

SnCAE (with Decoder) 1.83±5.26

D-CNN 1.72±5.07

Figure 9: Shape estimation accuracy of the Nitinol wire with regards

to the number of collected samples and for FC-NN and SnCAE.
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Figure 10: Shape estimation accuracy of the electric wire with regards

to the number of collected samples and for FC-NN and SnCAE.

Table 3: Accuracy of inverse solution with the SnCAE encoder

Wire Force error (N) Torque error (Nm)

Nitinol 0.34±0.28 0.038±0.032

Electric 0.52±0.11 0.051±0.016

in Section 4.3 while sampling MNitinol=26,187 and

MElectric=15,400 Nitinol and electric wire shapes, re-

spectively, and their corresponding F/T measurements.

For each sample, an h = 6 degree polynomial function

was fitted and m = 100 equally spaced points were gen-

erated along it. Training set D is, therefore, comprised

of F/T measurements and their corresponding polyno-

mial approximation of the shape. In addition, test sets

were collected independent of the training set and in-

cluded approximately 1, 200 samples. Shape estimation

error is defined as the Root-Mean-Square-error (RMSE)

between measured marker positions of a test shape and

the closest points of the predicted polynomial shape

(based on corresponding F/T measurement).

We first analyze the shape estimation of the Nitinol

wire. Using dataset D, we train the proposed SnCAE

model along with FC-NN and D-CNN models for com-

parison. In addition, we also provide results for the

analytical model as implemented in [20]. Hence, op-

timization problem (7) was solved for each sample in

D taking approximately 48 hours in total. With the

solutions, we train NN model ψ to map F/T measure-

ments to theoretical wire configurations enabling the

solution of p(t) = Φ(ψ(ai)). On the other hand, the

other NN models were optimized to yield the lowest

shape estimation error. The optimal FC-NN model is

Table 4: Roll-out errors along planned paths

Error
Shape Force Torque

(mm) (N) (Nm)

Goal reach 4.5±2.9 0.23±0.18 0.041±0.027

Path tracking 6.1±3.3 0.36±0.29 0.066±0.055

composed of one hidden layer of 119 nodes, Rectified

Linear Unit (ReLU) activation function and a regular-

izer of 8.8 × 10−7. The optimal hyper-parameters of the

SnCAE model are ma = 16, mb = 480 and mc = 10. As

discussed in Section 4.4, the evaluated D-CNN has the

same structure of the SnCAE decoder and with similar

optimal hyper-parameters.

Table 1 summarizes the shape estimation accuracy re-

sults of all methods for the Nitinol and Electric wires. In

addition, Table 2 shows the mean computation time of

an individual wire shape estimation for both wire types.

Computation time was evaluated on an Intel-Core i7-

8700 Ubuntu machine with 16GB of RAM. First, the

analytical model not only takes a long period of time

to process data, it provides inferior results in terms of

accuracy. For the model to provide better accuracy as

demonstrated in [20], much more data is required for

training calibration model ψ with the cost of days more

of computation. Also, the average computation time for

one shape estimation is rather large, fits to the time re-

ported in [21] and is limited in real-time motion plan-

ning. On the other hand, with the same amount of

data, a NN can provide a much lower error as the re-

sults indicate. Furthermore, SnCAE is shown to provide

lower errors in average compared to the FC-NN with a

much smaller standard deviation. D-CNN also provides

a fairly good accuracy while only providing map Γwith-

out the inverse solution. Computation times of shape es-

timation for all data-based models are much faster by at

least an order of magnitude compared to the analytical

model. Note also that with a GPU, the computation time

can be significantly reduced. Thus, data-based models

are far more suitable for real-time applications.

Figures 9 and 10 show the shape estimation error

of the Nitinol and Electrical wires, respectively, for

SnCAE and FC-NN with regards to the number of sam-

ples in D. The error for each number of samples was

cross validated over 20 sequential data batches taken

randomly from the entire training set. While the im-

provement of SnCAE over FC-NN is marginal for Niti-

nol, the improvement is much larger for the electrical

wire. Overall, the results show that SnCAE outperforms

FC-NN while enabling low errors for a relatively small

amount of data. The electrical wire is softer than the

Nitinol and, therefore, the magnitude of the F/T sig-

nals are smaller and more affected by noise making it

harder to learn. Nevertheless, the mean error of SnCAE

is rather small. In addition, one can settle for half of the

data and acquire almost the same accuracy. In a colli-

sion checker and motion planning setting, a safety dis-

tance would be taken from the wire that is larger than

such accuracy. Figure 11 illustrates six Nitinol wire
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(a) (b) (c)

(d) (e) (f)

Figure 11: Examples of six Nitinol wire shape estimations. Black markers are the measured ground truth while the blue curve is the shape

estimation. The estimations have mean errors of (a) 11.75mm, (b) 9.83mm, (c) 6.54mm, (d) 12.61mm, (e) 8.30mm and (f) 13.32mm.

Figure 12: Shape estimation of a standard electrical wire using only a Force/Torque sensor on one gripper. The wire configuration on the right is

approximated and visualized in simulation (red markers), and compared to markers (white markers) tracked with a motion capture system.
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Figure 13: The wire is manipulated along a planned path (yellow

curves) in AFT from (top) start to (bottom) goal. The shape of the

wire is estimated in real-time (red curve) using the decoder of the

SnCAE and motion of the gripper is determined according to model

Λ.

shape estimation. In addition, Figures 1 and 12 show

examples of shape estimation with SnCAE in real-time

for the Nitinol and electrical wires, respectively.

Table 3 presents the F/T errors of the inverse prob-

lem solved with the Encoder of the SnCAE. The en-

coder is evaluated over the test data mapping measured

wire shapes to F/T states. For reference, maximal abso-

lute force and torque measured with the Nitinol wire are

6.27 N and 1.06 Nm, respectively, and for the electrical

wire, 3.10 N and 0.3 Nm. The results, therefore, show

good F/T estimation allowing mapping desired shapes

to F/T states for motion planning, as discussed in the

next section.

5.2. Path planning

We conduct an experiment in which the robot must

manipulate the Nitinol wire to some desired shape.

Map Λ is implemented by training a standard fully-

connected NN as discussed in Section 4.5. Further-

more, goal shapes Pg are randomly sampled by man-

ually placing the cable without the robot along desired

shapes and recording using the motion capture system.

A goal state is computed with the encoder according to

ag = Γ
−1(Pg). An RRT∗ is then implemented to plan

in AFT while using Γ for collision checking and Λ for

moving the robot along the path.

We analyze roll-outs along ten planned paths to var-

ious goals. At each trial, we plan motion from the cur-

rent shape to a chosen goal shape. Once planned, the

path is rolled-out in open-loop by exerting the com-

puted sequence of gripper poses. Table 4 summarizes

the results for roll-out accuracy both for tracking the

path and reaching the desired goal. Note that a shape

tracking error refers to the RMSE of the markers rel-

ative to the planned shapes of the corresponding steps

along the path. Then, the results show high accuracy

tracking and goal reaching. A path was planned with the

accuracy of the SnCAE decoder. However, roll-outs are

dependent on the accuracy of the corresponding gripper

pose b acquired by learned model Λ. Hence, the accu-

rate model Λ enabled the good tracking of paths with-

out regards to the accuracy of the decoder that planned

them. Figure 13 shows snapshots of one roll-out while

the corresponding path tracking in AFT is illustrated in

Figure 14. Another roll-out example is seen in Figure

15. Tracking is seen to be accurate both in shapes and

in AFT .

Figure 16 shows a demonstration of planning a path

in the presence of a cylindrical obstacle. The location

of the obstacle was detected with markers and a motion

capture system. Motion to the same goal was conducted

five times while starting from different states. All roll-

outs were successful and the wire did not collide.

6. Conclusion

We have explored the learning of wire shapes based

on non-visual perception. While analytical models are

commonly used, we have proposed training a NN model

based on F/T measurements exerted on a robot arm by

a wire. An autoencoder based model, termed SnCAE,

was presented where convolutional layers were used to

maintain the spatial shape of the wire and the latent

space was forced to resemble the space of F/T measure-

ments. Then, the trained encoder and decoder are used

for mapping wire shape to F/T state and vice versa, re-

spectively. In general, the evaluated data-based mod-

els (decoder of SnCAE and FC-NN) outperformed the

analytical approach proposed in prior work for shape

estimation. While the SnCAE gained moderate accu-

racy improvement over the FC-NN for the two cables, it

has provided an added value with the encoder. The en-

coder was shown to be able to solve the inverse problem

and identify goal F/T states from given shapes. Fur-

thermore, the results show that sufficient accuracy can

be achieved with a relatively small amount of samples.
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Figure 14: Roll-out of a planned path in AFT corresponding to the motion in Figure 13.

Along with a Nitinol wire, we have demonstrated, for

the first time, the ability to predict the shape of an elec-

trical wire with an accuracy that is feasible for real ap-

plications. With another NN model trained with the

same collected data, we can map F/T states to desired

gripper poses. Hence, a motion planner was imple-

mented to plan and roll-out collision-free paths. A set of

experiments was shown to validate pose estimation and

planning accuracy. Overall, we have shown the ability

to learn an accurate mapping from measured F/T load to

the shape of the wire and vice versa.

Our proposed method indeed provides a model for

the trained wire. The model cannot be applied, for in-

stance, to a wire of different length. Therefore, future

work may involve the generalization of a NN model to

wires of various lengths, materials and stiffnesses. In

addition, some data augmentation can be performed to

reduce the number of real samples required. Alterna-

tively, data collected from a physics engine along with

domain randomization may provide sufficient general-

ization to various wires. Advanced models such as the

U-Net[50] can also be integrated in order to augment

performance.
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