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Abstract

While the Hidden Markov Model (HMM) has been used for a wide range
of applications, an efficient procedure for estimating the model parameters
and finding the optimal state sequence has not been generally formulated for
orders higher than first, i.e., for models that assume higher order of either
the state sequence memory, or the dependency of the observations on the
states. We propose a simple method that transforms any high order HMM
(including models in which the state sequence and observation dependency
are of different orders) into an equivalent first order one, and thus makes the
first order HMM formulation applicable to models of any order.

The transformation forms an equivalent first-order model by stacking the
state variables into vectors of appropriate length. The Baum-Welch reesti-
mation procedure is modified to fit the transformed model, in cases where
the order of the state sequence is different from that of the observations. A
method for implementation is suggested, along with several efficient ways to
carry out the transformation. Also discussed is order selection for high-order
hidden Markov modeling, where to be determined are the order of the state
sequence memory, and that of the observation dependency.

The high-order HMM is applied to the problem of rainfall estimation from
power measurements of cellular networks. The measurements were recorded
from a network of fixed terrestrial line-of-sight backhaul microwave links,
that are employed for transmission purposes by cellular providers. Hidden
Markov modeling is used, where the power measurements are modeled as
the observations, and the hidden state sequence is the rain indicator process.
Applying model selection methods to the data shows that the specifications
of the first-order HMM are not sufficient to capture the dynamics of rain-
induced attenuation, and thus, higher order modeling is required. A method
is introduced for estimating rain rate from the power measurements, that
is based on using the HMM, and the power law- a well known empirical
relation between rain rate and microwave attenuation. The results presented
are promising in terms of comparison with rain measured by rain gauges.
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Chapter 1

Introduction

The problem of estimating spatial-temporal rainfall has been intensively in-
vestigated worldwide and has important implications in meteorology, hy-
drology, agriculture, environmental policies and weather forecasting. Several
techniques have been developed to monitor rainfall. The prevailing methods
use a network of rain gauges or a weather radar. Rain gauges are considered
to provide accurate ground level fixed point measurements (though prone to
errors due to wind, human etc.). However, it is generally impractical to in-
stall and maintain a sufficient number of closely spaced rain gauges required
to monitor highly variable distribution of rainfall. Weather radars, on the
other hand, estimate rainfall field over a large contiguous areas with high
temporal and spatial resolution, but are affected by high degree of uncer-
tainty due to several reasons. For example, differences between measuring
aloft and at ground level, and reflections from other forms of precipitation
such as hail of melting particles [2]. Some researchers have suggested a com-
bined approach that uses radar reflectivity and rain gauge data, in order to
produce more accurate precipitation estimation (see [14] for example).

The increasing popularity of cellular communications and the global spread
of wireless communication networks bring about a great opportunity for their
use in environmental studies in general, and precipitation monitoring in par-
ticular. Wireless communication systems are wide-spread spatially, and op-
erating in real time, 24 hours a day, and therfore, can provide high temporal
and spatial resolution enviromental monitoring without additional cost [26].

1.1 Rain estimation from microwave links

Several methods were proposed to estimate rainfall from microwave links, e.g.
by Dino Giuli in [19] and by the MANTISSA Project in [31]. The methods
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discussed were based on a pre-determined setup of links, characterized by the
spatial geometry or the wave frequencies. In a published pioneer work, Messer
et al [26] have demonstrated that RSL measurements from fixed terrestrial
line-of-sight microwave links, deployed by cellular providers, can be used to
estimate space-time rainfall intensities. In this work we continue focusing on
using existing wireless systems, where the geometry and other parameters
of the monitored system, designed by the cellular operators to maximize
communication performance, are given. This enforced us to use an entirely
different method for estimating the rainfall intensity. The monitored system
is composed of existing, backhaul microwave links. Timely attenuation data
are recorded from every link in the monitored area and transmitted to a
central processing facility. Goldshtein [20] developed a method for generating
a rain field of regular grid, based on the cellular measurements. In that
method, the microwave links, which are arbitrarily located, are represented
by points, and then spatialy interpolated onto a regular grid to create the
rain field.

1.2 Hidden Markov modeling

The problem of identifying wet and dry spells in microwave link data is ad-
dressed. Rahimi et al. [31] suggested a method which is based on computing
the correlation between measurements from opposite links, as the attenua-
tion tends to change similarly in the presence of rain. The main fault of this
method is that it can be used only with links in which both ends transmit
and recieve. For identifying wet and dry spells we used hidden Markov mod-
eling. A Hidden Markov model (HMM) is a model in which an underlying
Markovian state sequence generates an observation sequence. An efficient
algorithm for solving the HMM (i.e., estimating the model parameters and
finding the hidden state sequnce) given a set of observations exists fot the
case of first-order HMM [29]. Using model selection methods, we examined
the compatibility of the statistical properties of the problem to the first-order
HMM specifications. The aforementioned examination showed that the first-
order HMM does not model the problem accurately enough to capture its
dynamics, and thus a high-order generalization to the first-order HMM al-
gorithm is needed. We propose a method that transforms high-order models
into first-order ones [21] and thus provides the aforementioned generalization.

The results presented in this work show that reliable estimates of rainfall
can be obtained using samples from existing infrastructure of fixed terrestrial
microwave links in terms of comparability with rain gauge estimates. Based
on the analysis made in this work, it is envisaged that the current infrastruc-
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ture of fixed line of sight microwave links can provide an alternative mean
to reconstruct rainfall fields at ground level, or can be considered integra-
tive approach with the current weather radar and gauge methods in order to
improve resolution and over all performance of rainfall estimation.

1.3 The power law

The propagation of electromagnetic microwaves traveling through air is in-
fluenced by atmospheric conditions. In particular, electromagnetic signals
traveling at frequencies of above 10GHz, where the radio waves and raindrops
are of comparable sizes, are subject to large variations in the attenuation due
to precipitation. The basic idea is to collect measurements of the received
signal level (RSL) from a network of microwave links, and process it for pre-
cipitation monitoring purposes. The microwave propagation impairments,
caused by scattering and absorption of water droplets, have been extensively
studied for years by telecomm engineers to provide reliable microwave com-
munication system design [20]. The most common relation between rain rate
and attenuation in a given microwave link, is known as ‘The Power Law’,
and is given by

A = aRbL (1.1)

where A[dB] is the rain induced attenuation, R[mm/hr] is the rain rate, L[km]
is the length of the link, and a, b are functions of the frequency, temperature
and drop size distribution. The power law assumes constant rain rate along
the link. The validity of the power law is now well established, and though the
relation is regarded as empirical, a strong theoretical justification exists for
this choice. For example, See [28]. See also propagation tests and validation
in specific frequencies in [22].

In this work we regard the attenuation as a source for atmospheric infor-
mation. Given a set of attenuation measurments from a link, the estimation
of the rain induced attenuation from the total attenuation provides informa-
tion on the rain rate by inversion of the power law:

R =

(
A

aL

) 1
b

. (1.2)

1.4 The data

The work presented here has been implemented on data records from an
actual network of fixed terrestrial line-of-sight microwave links, employed
for transmission purposes by ‘Pelephone’, an israeli cellular provider. Each
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link has its own carrier frequency. All frequencies range between 17 and 23
GHz. The received signal level (RSL) has been recoded from each link in the
monitored system, every minute, by a central server. The RSL is displayed
in dBm units, with 1 dBm resolution. The links include a fade mitigation
capability called Adaptive Transmitted Power Control (ATPC), a mechanism
that is used to improve the spectrum efficiency of the links by limiting the
transmitted power to that required to maintain a constant bit error rate
(BER) regardless of the propagation conditions. The ATPC automatically
controls the transmitted power through indication of the received power. Due
to limitations of the system, records of the transmitted power level were not
available. Our interest is in the attenuation, which is the difference between
the recievied power and the transmitted power (in dB). Therefore, we only
used measurments that were taken while the ATPC was turned off, that is,
while the transmitted power was constant.

We denote the RSL of a given link at time n by Pn[dBm]. The total
attenuation is the difference between the transmitted power and the recieved
power (the RSL). We do not have the transmitted power level but we know
it is constant. We arbitrarily take this constant to be max{Pn}. The atten-
uation at time n, Atotaln [dB] is then given by

Atotaln = max
l
{Pl} − Pn. (1.3)

We denote the rain induced attenuation at time n by An[dB], and the at-
tenuation that is not rain induced, i.e., the zero rain attenuation by Zn[dB].
The total attenuation is the sum

Atotaln = An + Zn. (1.4)

1.5 Outline of the method

Since the attenuation is affected by a variety of physical phenomena, we
first try to separate, or to estimate the rain induced attenuation from the
total attenuation in order to estimate rainfall intensity. Given a time series of
RSL measurements from a link, our goal is, then, to estimate the rain induced
attenuation from these measurements. At times of no rain, the rain induced
attenuation is zero (An = 0) and thus (1.4) becomes Zn = Atotaln . At times of
rain the values of Zn were interpolated from its values at dry times. In order
to identify the wet and dry periods, the Hidden Markov Model (HMM) was
employed. The power measurements were modeled as the observations and
the hidden state sequence is the rain indicator process - zero when there is
no rain and one otherwise.
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In the next chapter an HMM overview is given, and a generalization of
the first-order HMM to higher orders is suggested. In chapter 3 we apply
the HMM to identify wet and dry periods, and examine, using Akaike’s in-
formation criterion, wheather the first-order assumptions hold. In chapter 4
we use the results obtained by the HMM to estimate rain rate and compare
to rain measured by rain gauges.
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Chapter 2

Hidden Markov models

A Hidden Markov Model (HMM) is a model in which the observrd signal is
a probabilistic function of an underlying Markovian state sequence, where
the model parametrs are generally unknown. The basic theory of HMMs was
published in a series of classic papers by Baum and his colleagues (e.g.[5]) in
the late 1960s and early 1970s, and the statistical methods of HMMs have
become increasingly popular over the last few decades. Since the models are
very rich in mathematical structure, they can form the theoretical basis for
use in a wide range of applications. Some examples are speech recognition
[3], biomedical [4], image restoration [7] and economics [32].

In this chapter we propose a generalization of the first-order HMM to
higher orders. This generalization makes the well known HMM formulation
applicable to models of any order.

2.1 The first-order hidden Markov model

2.1.1 Markov chains

A first-order Markov process, denoted here by {qn}, is a stochastic process
that satisfies

P (qn|{ql}l<n) = P (qn|qn−1). (2.1)

A Markov process {qn} is said to be homogeneous if the transition probability
P (qn|qn−1) is independent of n. A Markov process taking a finite number
of values is called a Markov Chain. These values are called states. We
denote the number of states by M , and the states by σ1, σ2, . . . , σM , i.e.,
qn ∈ {σ1, σ2, . . . , σM} ∀n.

The probability of an homogeneous Markov chain of length N is given by

P (q1, q2, . . . , qN) = P (q1)P (q2|q1) · · ·P (qN |qN−1, qN−2, . . . , q1) =
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= P (q1)
N∏
n=1

P (qn|qn−1), (2.2)

and thus, a full probabilistic description of such a process consists of the
following parameters

• Transition probabilities

aij = P (qn = σj|qn−1 = σi), 1 ≤ i, j ≤M. (2.3)

• Initial state probabilities

πi = P (q1 = σi), 1 ≤ i ≤M. (2.4)

2.1.2 Extending to HMM

A Hidden Markov Model is a model in which the state sequence (which
is a Markov chain) is not directly observable. It generates an obseravtion
sequence according to a set of M probability distributions, associated with
the M different states of the chain. At each time step n, an observation On is
drawn from the (discrete or continuous) probability distribution associated
with the current state qn. The HMM formulation is based on the assumption
that each observation is conditionally independent on the previous ones and
on the states given the current state, i.e.,

P (On|{Ol}l<n, {ql}l≤n) = P (On|qn). (2.5)

We denote the probability distribution of state σi by bi(On), i.e.,

bi(On) = P (On|qn = σi), 1 ≤ i ≤M. (2.6)

The set of parametrs λ = {{aij}, {πi}, {bi(·)}} gives a full probabilistic de-
scription of the aforementioned model.

Considering the model described above, solving the following problems,
known as the three basic problems of the HMM [29], is of great interest:

P1 Given the observation sequence {On} and the model parameters λ, how
do we efficiently compute P ({On};λ)?

P2 Given the observation sequence {On} and the model parameters λ, how
do we choose a corresponding state sequence {qn} which is optimal in
some meaningful sense?

P3 How do we adjust the model parameters λ to maximize P ({On};λ)?
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An efficient procedure for solving problems P1-P3 in the first-order HMM
has been formulated and is detailed in [29] (We refer to that procedure as
E1HMM1)

2.2 Generalizing to higher orders

Despite the popularity of the E1HMM, it is limited to cases where the fol-
lowing assumptions hold:

1. The hidden state sequence is a first order homogeneous Markov process.

2. The observation at each time step is conditionally independent of the
observation history and state history, given the current state.

While in some applications these assumptions are valid, other find them
restrictive and demand modeling of higher order. In the analysis of DNA
sequences, for example, where high order Markov models are often used, the
specifications of the first order HMM are not sufficient [12]. In the field of
speech recognition, it has been shown in [24] that a 2nd order generalization
of the E1HMM outperforms the E1HMM. In communications, an example of
a high order hidden Markov model is the transmission of a high-order Markov
source over a multipath channel with additive noise, i.e.,

On =
m−1∑
l=0

hlq̃n−l + vn

where q̃n is an rth order Markov process over a finite alphabet, hn is the
impulse response of the channel, vn is an i.i.d. noise and On is the recieved
signal. Note that the order of the hidden state sequence r and the order
of the observation dependency on the states m are not necessarily equal. A
high-order generalization of the E1HMM can provide a very powerful tool
for the above scheme compared to other common methods (e.g. Wiener
filtering or MAP) because (1) The E1HMM does not reqire stationarity of
the signal q̃n (It only requires q̃n to be an homogeneous Markov process,
which is not necessarily stationary), and (2) The E1HMM does not require
prior knowledge of the parameters (and thus, for example, can provide an
estimate of the source without knowing the impulse response of the channel).

1The term HMM is somewhat ambiguous in the literature beacuse it refers to both the
model itself, as well as to the procedure for solving the model. Therefore, in this work,
the efficient procedure for solving the model in the first order case, as described in [29],
will be referred to as E1HMM. The model itself will be simply referred to as HMM (first
order HMM or high order HMM).
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Few generalizations had been proposed to overcome the limitations of the
E1HMM. Mari et al. proposed a 2nd order generalization to the E1HMM
[24]. However, in their model only the state sequence is of 2nd order and
furthermore, higher orders are not discussed. JA du Preez presented an
algorithm that transforms any high order HMM into an equivalent first order
HMM [15]. In that work, high order is considered only for the state sequence,
and his algorithm is complicated compared to our proposed method. Wai Ki
Ching et al. developed a method for solving the high order HMM [12], yet did
not address the very important problem of adjusting the model parameters.
Another such method was proposed by L. M. Lee and J. C. LEE [23], yet their
method is applicable only to the left-to-right structure common in speech
processing applications.

In the next sections, we present a simple and elegant method that trans-
forms any high otder HMM into an equivalent first order HMM and thus
makes the E1HMM applicable to HMMs of any order. First, we describe the
high order model on which we intend to apply the E1HMM. Next, we intro-
duce the transformation and an efficient way to perform it (and its inverse),
and describe how to modify the E1HMM to fit the transformed model, where
special handling is required for the procedure of the parameter reestimation
(iterative update and improvement [29]) in the cases where the orders of the
state sequence and observation dependency are different.

2.2.1 The high-order model

Assume the following model: The hidden state sequence {q̃n}Nn=1 is an ho-
mogeneous Markov process of order r with S states, i.e., a stochastic process
that satisfies

P (q̃n|{q̃l}l<n) = P (q̃n|{q̃l}n−1
l=n−r) (2.7)

where the transition probability P (q̃n|{q̃l}n−1
l=n−r) is independent of n, and

q̃n takes S possible values. Without loss of generality, let these values be
{0, 1, . . . , S − 1}.

The process {q̃n}Nn=1 is called the hidden state sequence because it is not
directly observable. The sequence of (possibly vector valued) observations
{On}Nn=1 is generated by the state sequence according to a set of probability
distributions that satisfy

P (On|{Ol}l<n, {q̃l}l≤n) = P (On|{q̃l}nl=n−(m−1)), (2.8)

i.e., at each time step n, an observation On is generated by the state se-
quence according to a probability distribution associated with the last m
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states {q̃l}nl=n−(m−1). Each observation is conditionally independent on the
previous ones and on the state sequence history, given the current and the
preceding m− 1 states.

To model the above process, the following parameters are needed.

• Sr+1 transition probabilities,

ãir...i0 = P (q̃n = i0|q̃n−1 = i1, . . . , q̃n−r = ir). (2.9)

• Sm observation (discrete or continuous) probability distributions,

b̃i0...im−1(On) = P (On|q̃n = i0, . . . , q̃n−(m−1) = im−1). (2.10)

• Sν initial state probabilities,

π̃i1...iν = P (q̃1 = i1, q̃0 = i2, . . . , q̃2−ν = iν) (2.11)

where ν = max{r,m}.

We denote the set of all model parameters by λ̃, i.e.,

λ̃ = {{π̃i1...iν}, {b̃i0...im−1(·)}, {ãir...i0}}.

Having defined the model, we wish to have an efficient procedure for
solving the problems P1-P3 for the high-order case.

Note that the special case of r = m = 1 is the First Order HMM, in
which the state sequence is denoted by {qn}, and (2.7),(2.8) take the forms
of (2.1) and (2.5).

2.2.2 Transforming into first-order

Consider the high order model of section 2.2.1, i.e., an rth order Markov state
sequence {q̃n} over {0, 1, . . . , S − 1} that generates an observation sequence
{On} with state dependency of order m. Our transformation is based on the
following, well known property of high-order Markov chains.

Proposition 1 Let Q
ν

n = [q̃n, q̃n−1, . . . , q̃n−(ν−1)]
T . The (vector valued) pro-

cess {Qν

n} is a first order Markov process for any ν ≥ r.

Proof: P (Q
ν

n|{Q
ν

l }l<n) = P ({q̃l}nl=n−(ν−1)|{q̃l}l<n) = P (q̃n|{q̃l}l<n) =

P (q̃n|{q̃l}n−1
l=n−ν) = P ({q̃l}nl=n−(ν−1)|{q̃l}

n−1
l=n−ν) = P (Q

ν

n|Q
ν

n−1).
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Definition 1 Let

f : {0, 1, . . . , S − 1}ν −→ {0, 1, . . . , Sν − 1}

be the mapping of any base S number to its decimal value, i.e., if i0, i1, . . . , iν−1 ∈
{0, 1, . . . , S − 1}, then

f([i0, i1, . . . , iν−1]) = [Sν−1, . . . , S, 1]· [i0, i1, . . . , iν−1]T

=
ν−1∑
l=0

ilS
ν−1−l. (2.12)

Note that f is bijective and thus invertible. We denote its inverse by f−1.

Proposition 2 Let ν = max{r,m} and let

qn = f(Q
ν

n) =
ν−1∑
l=0

q̃n−lS
ν−1−l. (2.13)

The (scalar valued) process {qn} and the observation sequence {On} satisfy
(2.1) and (2.5) and thus constitute a first order HMM.

Proof: qn is obtained by a memoryless operation on Q
ν

n and thus, {qn} is
a first order homogeneous Markov process as in (2.1).

Now, P (On|{Ol}l<n, {ql}l≤n) = P (On|{Ol}l<n, {Q
ν

l }l≤n) =
P (On|{Ol}l<n, {q̃l}l≤n) = P (On|{q̃l}nl=n−(ν−1)) = P (On|Q

ν

n) = P (On|qn) which

is (2.5).

qn is the decimal value of the base S number [q̃n, q̃n−1, . . . , q̃n−(ν−1)] (where
q̃n is the most significant digit and q̃n−(ν−1) is the least significant one), and
thus the following holds:

• qn has Sν possible states {0, 1, . . . , Sν − 1}.

• The transformation (2.13) can be implemented with the recursive equa-
tion

qn = q̃nS
ν−1 +

⌊qn−1

S

⌋
(2.14)

where b·c denotes the floor operation.

• {q̃n} can be perfectly reconstructed from {qn}. The inverse transfor-
mation can be implemented as follows:

q̃n =
⌊ qn
Sν−1

⌋
. (2.15)
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The transformation and its inverse can also be carried out using linear,
time invariant (LTI) filters. Applying the Z transform on both sides of (2.13)
gives the transformation filter

T (z) =
q(z)

q̃(z)
= Sν−1

ν−1∑
l=0

(zS)−l =
Sν − z−ν

S − z−1
(2.16)

and its inverse, the reconstruction filter of {q̃n} from {qn}

T−1(z) =
q̃(z)

q(z)
=

1

T (z)
=

S − z−1

Sν − z−ν
. (2.17)

One must bear in mind, though, that the above filters might output non-
integer values due to finite machine accuracy and thus, should be imple-
mented carefully.

Depicted in Fig. 2.1 are two examples for high-order models and their
transformed, first-order equivalents. In A.1 is an example of a high order
model in which r = 2, m = 1 and S = 2. The high order hidden state
sequence {q̃n} has two states {0, 1}. The state sequence is a 2nd order Markov
process. Therefore, every transition depends not only on the current state,
but also on the preceding one. The observation sequence has a first order
dependency on the states, i.e., each observation is dependent only on the
current state and thus there are only two probability distributions, one for
each state. Fig. A.2 depicts the equivalent transformed model, which is of
first order. The state sequence of the transformed model {qn} is a first order
Markov process with four states {0,1,2,3}. Note the following two properties
of the transformed model: (1) Not all transitions between the four states are
possible. This matter of ”illegal transitions” is discussed in subsection 2.2.3.
(2) There are four states, yet only two different probability distributions.
This follows from the fact that m < r and explained in subsection 2.2.3.

2.2.3 The HMM parameters

Once our model is transformed, it meets the first order HMM conditions (2.1)
and (2.5) and we now wish to solve the three HMM problems P1-P3 using the
E1HMM. The first two problems need no special attention and their solution
is as detailed in [29]. In this section we address the parameter estimation
problem P3, which requires careful handling for the cases in which m 6= r.
We first address the case m = r and then expand the discussion to the cases
m < r and m > r.
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Figure 2.1: Two examples for high-order models with S = 2, and their transformed, first-
order equivalents. A.1) Model A: A high-order model with r = 2 and m = 1, i.e., a 2nd
order Markov chain generating an observation sequence with 1st order state dependency.
A.2) Model A transformed. Notice that in the first-order equivalent, since m < r, the
number of observation distributions is smaller than the number of states. Notice also that
not all state transitions are possible. This is due to (2.21). B.1) Model B: A high-order
model with m = 2 and r = 1, i.e., a 1st order Markov chain generating an observation
sequence where each observation depends on both the current and preceding states. B.2)
Model B transformed. Notice that since r < m, the number of transition probabilities is
smaller than the number of possible transitions. In general, the number of states in the
transformed model is dictated by ν = max{r,m}, and the number of parameters is equal
to that of the original high-order model.

The m = r case

Having performed the transformation (only hypothetically of course, because
the state sequence is not known yet), we now have a first order hidden state
sequence {qn} with states {0, 1, . . . , Sr−1}, and first order state dependency
of the observation sequence {On}. Let us examine our new set of parameters
associated with the transformed model, and write the Baum-Welch reesti-
mation formula for each of them [29]. We should expect to have the same
number of parameters as that of the original high order model.

The initial state probabilities. The first order model has Sr states (here
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ν = r = m) and thus Sr initial state probabilities

πi = P (q1 = i) = π̃i1...ir (2.18)

where i is the decimal value of the base S number [i1, . . . , ir], or i = f([i1, . . . , ir]).
The reestimation formula for πi is given by

π̂i = γ1(i) (2.19)

where γn(i) = P (qn = i|{Ol}) as defined in [29].
The transition probabilities. In the first order model we have an Sr × Sr

transition matrix populated by S2r transition probabilities

aij = P (qn = j|qn−1 = i) = ãir...i0 (2.20)

where i = f([i1, . . . , ir]) and j = f([i0, . . . , ir−1]). This is obviously more
than the Sr+1 probabilities of the high order model. That is because there
are illegal transitions we have yet to consider. To illustrate the matter of
illegal transitions, let us look at the following example in which S = 2 and
r = 3. If, for some n, Q

r

n = [q̃n, q̃n−1, q̃n−2]T = [0, 1, 1]T and thus qn = 3, it
implies that Q

r

n+1 = [q̃n+1, q̃n, q̃n−1]T = [q̃n+1, 0, 1]T can only take two possible
values: [0, 0, 1]T or [1, 0, 1]T associated with the two possible values of q̃n+1,
which means that qn+1 will take either the value 1 or 5. This means that
from state 3 we can only go to state 1 or to state 5. There are only two
possible transitions for each state and thus only 16 legal transitions in total,
whereas the transition matrix has 64 entries.

In general, the legality of the transitions is dictated by the fact that the
first r − 1 entries of Q

r

n = [q̃n, q̃n−1, . . . , q̃n−(r−1)]
T must equal the last r − 1

entries of Q
r

n+1 = [q̃n+1, q̃n, . . . , q̃n−(r−2)]
T . Now, since qn, qn+1 are the decimal

values of Q
r

n, Q
r

n+1, this is equivalent to⌊qn
S

⌋
= qn+1 −

⌊ qn+1

Sr−1

⌋
Sr−1. (2.21)

A transition fron state i to state j is legal, then, only if i and j satisfy⌊
i

S

⌋
= j −

⌊
j

Sr−1

⌋
Sr−1. (2.22)

Transition probabilities that correspond to illegal transitions must equal zero,
Hence aij = 0 for all 0 ≤ i, j ≤ Sr−1 that satisfy bi/Sc 6= j−bj/Sr−1cSr−1.

For each possible value of qn (out of the Sr possible ones), qn+1 can take
one out of S possible values (each associated with one of the S possible
values of q̃n+1) and thus, as expected, there is a total of Sr+1 transition
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probabilities to be estimated. Transition matrix entries that correspond to
illegal transitions are set to zero. For the example above, (2.22) becomes⌊

i

2

⌋
= j −

⌊
j

22

⌋
22

and thus the transition matrix {aij} is of the form

a00 0 0 0 a04 0 0 0
a10 0 0 0 a14 0 0 0
0 a21 0 0 0 a25 0 0
0 a31 0 0 0 a35 0 0
0 0 a42 0 0 0 a46 0
0 0 a52 0 0 0 a56 0
0 0 0 a63 0 0 0 a67

0 0 0 a73 0 0 0 a77


.

The reestimation formula for aij is given by

âij =



N−1∑
n=1

ξn(i, j)

N−1∑
n=1

γn(i)

if

⌊
i

S

⌋
= j −

⌊
j

Sr−1

⌋
Sr−1

0 if

⌊
i

S

⌋
6= j −

⌊
j

Sr−1

⌋
Sr−1

(2.23)

where ξn(i, j) = P (qn = i, qn+1 = j|{Ol}) as defined in [29].
The observation probability distributions. Each of the Sr states has a

corresponding observation probability distribution

bi(On) = P (On|qn = i) = b̃i0...ir−1(On) (2.24)

where i = f([i0, . . . , ir−1]). We distinguish between two cases:

• Discrete observation probability distribution. The resestimation for-
mula for bi(vk) = P (On = vk|qn = i), the probability of observing
symbol vk for state i, is given by

b̂i(vk) =

∑
n:On=vk

γn(i)

N∑
n=1

γn(i)

. (2.25)
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• Continuous observation probability distribution. In the continuous case,
the most general representation of the probability density function
(pdf) for which a reestimation procedure has been formulated, is a
finite mixture of the form

bi(x) =
K∑
k=1

cikg(x;µik, Uik) (2.26)

where cik is the mixture coefficient for the kth mixture in state i
and g(x;µik, Uik) is any log-concave or elliptically symmetric pdf (e.g.,
Gaussian) with mean vector µik and covariance matrix Uik for the kth
mixture component in state i [29]. The reestimation formulas for the
pdf parameters are given by

ĉik =

N∑
n=1

γn(i, k)

K∑
k=1

N∑
n=1

γn(i, k)

µ̂ik =

N∑
n=1

γn(i, k)On

N∑
n=1

γn(i, k)

Ûik =

N∑
n=1

γn(i, k)(On − µ̂ik)(On − µ̂ik)T

N∑
n=1

γn(i, k)

(2.27)

where γn(i, k) is the probability of being in state i at time n with the
kth mixture component accounting for On.

The procedure for computing γn, ξn is detailed in [29].

An interim summing up: In order to use the E1HMM for our high order
model, we make the proper adjustments to the E1HMM (define appropriate
states and set illegal transitions to zero), apply it to the observation sequence,
and then use the inverse transformation to get the hidden high order state
sequence.
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The m < r case

In this case the order of observation dependency on the state is smaller than
that of the states sequence (ν = r). The transformation (2.13) becomes

qn = f(Q
r

n) =
r−1∑
l=0

q̃n−lS
r−1−l (2.28)

and thus the state sequence {qn} is a first order Markov process with Sr

states {0, 1, . . . , Sr−1}. The dependency of order m assumption means that
P (On|{Ol}l<n, {q̃l}l≤n) = P (On|{q̃l}nl=n−(m−1)), and in particular P (On|{q̃l}nl=n−(r−1)) =

P (On|{q̃l}nl=n−(m−1)). In other words, only the first m entries of Q
r

n =

[q̃n, q̃n−1, . . . , q̃n−(r−1)]
T (the first m digits of the base S representation of

qn) matter to each state’s probability distribution and thus, the observation
sequence ”sees” only Sm different states while there are Sr different ones.
Consider the example from section 2.2.2. We apply the transformation to
obtain the first order state sequence qn which has four states {0, 1, 2, 3}.
However, since each observation On is (conditionally) dependent only on the
current high order state q̃n we get that

b0(On) = P (On|q̃n = 0, q̃n−1 = 0)

= P (On|q̃n = 0, q̃n−1 = 1) = b1(On) (2.29)

and

b2(On) = P (On|q̃n = 1, q̃n−1 = 0)

= P (On|q̃n = 1, q̃n−1 = 1) = b3(On). (2.30)

It follows that (2.25) is not valid in this case because it would yield Sr

different distributions whereas we expect to have only Sm different ones.
The reestimation formulas are derived by maximizing Baum’s auxiliary

function

Q(λ, λ̂) =
∑

q1,...,qN

P ({ql}|{Ol};λ) logP ({ql}, {Ol}; λ̂) (2.31)

over λ̂ where λ = {{πi}, {bi(·)}, {aij}} is the current set of parameters and

λ̂ = {{π̂i}, {b̂i(·)}, {âij}} is the reestimated one. It has been proven that

maximization of Q(λ, λ̂) leads to increased likelihood, i.e.,

max
λ̂

Q(λ, λ̂)⇒ P ({Ol}; λ̂) ≥ P ({Ol};λ) (2.32)
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and that eventually the likelihood function P ({Ol};λ) converges to a critical
point. More on the reestimation procedure can be found in [29].

We shall now derive the reestimation formulas under the assumption that
m < r for the discrete case. We can write

P ({ql}, {Ol}; λ̂) = π̂q1

(
N∏
n=1

b̂qn(On)

)(
N∏
n=2

âqn−1qn

)
(2.33)

and thus,

Q(λ, λ̂) =
∑

q1,...,qN

P ({ql}|{Ol};λ) log π̂q1 +

+
∑

q1,...,qN

P ({ql}|{Ol};λ)
N∑
n=1

log b̂qn(On) +

+
∑

q1,...,qN

P ({ql}|{Ol};λ)
N∑
n=2

log âqn−1qn . (2.34)

It follows that {π̂i}, {b̂i(·)} and {âij} can each be derived separately, so we
only have to maximize the second term of the RHS of (2.34) because the
assumption m < r only affects {bi(·)}. The reestimation formulas for {πi}
and {aij} are as in the case m = r, and given by (2.19) and (2.23). Let

Qb(λ, {b̂i}) =
∑

q1,...,qN

P ({ql}|{Ol};λ)
N∑
n=1

log b̂qn(On). (2.35)

Now,

Qb(λ, {b̂i}) =
N∑
n=1

∑
qn

log b̂qn(On)
∑
qk:k 6=n

P ({ql}|{Ol};λ)

=
N∑
n=1

∑
qn

log b̂qn(On)P (qn|{Ol};λ) (2.36)

and we wish to maximize Qb(λ, {b̂i}) subject to the constraint∑
k

b̂i(vk) = 1 ∀i ∈ {0, 1, . . . , Sr − 1} (2.37)

where the vk’s are all the possible observation symbols.
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From the fact that only the first m digits of the base S representation
of each state matter to the state’s probability distribution, it follows that
bi1(·) = bi2(·) if

bi1/Sr−mc = bi2/Sr−mc = i′

or
i1, i2 ∈ {i′Sr−m, i′Sr−m + 1, . . . , (i′ + 1)Sr−m − 1}

where i′ ∈ {0, 1, . . . , Sm − 1}, and thus we can write

Qb(λ, {b̂i}) =
N∑
n=1

Sr−1∑
i=0

log b̂i(On)γn(i)

=
N∑
n=1

Sm−1∑
i′=0

i2(i′)∑
i=i1(i′)

log b̂i(On)γn(i)

=
N∑
n=1

Sm−1∑
i′=0

log b̂i0(On)

i2(i′)∑
i=i1(i′)

γn(i) (2.38)

where

i1(i′) = i′Sr−m (2.39)

i2(i′) = (i′ + 1)Sr−m − 1 (2.40)

and i0 is any integer between i1(i′) and i2(i′).
To maximize Qb(λ, {b̂i}) subject to (2.37) we use Lagrange multipliers.

∂Qb(λ, {b̂i(vk)})
∂b̂j(vk)

=

=
∑

n:On=vk

∂

∂b̂j(vk)

Sm−1∑
i′=0

log b̂i0(vk)

i2(i′)∑
i=i1(i′)

γn(i)

=
∑

n:On=vk

1

b̂j(vk)

i2(b j

Sr−m c)∑
i=i1(b j

Sr−m c)

γn(i). (2.41)

The derivative of the constraint equals 1 for all k, so

∑
n:On=vk

i2(b j

Sr−m c)∑
i=i1(b j

Sr−m c)

γn(i) = b̂j(vk)η (2.42)
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where η is the Lagrange multiplier. Summing both sides over k and substi-
tuting (2.37) yields

η =
N∑
n=1

i2(b j

Sr−m c)∑
i=i1(b j

Sr−m c)

γn(i) (2.43)

and finally we obtain the reestimation formula

b̂i(vk) =

∑
n:On=vk

j2(i)∑
j=j1(i)

γn(j)

N∑
n=1

j2(i)∑
j=j1(i)

γn(j)

(2.44)

where

j1(i) =

⌊
i

Sr−m

⌋
Sr−m (2.45)

j2(i) =

(⌊
i

Sr−m

⌋
+ 1

)
Sr−m − 1. (2.46)

One can see, by comparing (2.25) and (2.44), that this result is very intu-
itive because, as expected, the estimator treats all states that share the same
base S prefix as equal, summing over them. We conjecture then, that the
assumption m < r will introduce a similar modification to the reestimation
formulas of the continuous case (2.27):
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ĉik =

N∑
n=1

j2(i)∑
j=j1(i)

γn(j, k)

K∑
k=1

N∑
n=1

j2(i)∑
j=j1(i)

γn(j, k)

µ̂ik =

N∑
n=1

On

j2(i)∑
j=j1(i)

γn(j, k)

N∑
n=1

j2(i)∑
j=j1(i)

γn(j, k)

Ûik =

N∑
n=1

(On − µ̂ik)(On − µ̂ik)T
j2(i)∑
j=j1(i)

γn(j, k)

N∑
n=1

j2(i)∑
j=j1(i)

γn(j, k)

.

(2.47)

The m > r case

Here ν = m, and the transformation (2.13) becomes

qn = f(Q
m

n ) =
m−1∑
l=0

q̃n−lS
m−1−l (2.48)

and thus the state sequence {qn} is a first order Markov process with Sm

states {0, 1, . . . , Sm−1}. The fact that r < m implies that the state sequence
{qn} has sort of a ”memory redundancy”. It means that at each time step,
the current state qn has more information than what the transition requires.
If we denote i = f([i1, . . . , im]) and j = f([i0, . . . , im−1]) then

aij = P (qn = j|qn−1 = i)

= P (q̃n = i0, . . . , q̃n−(m−1) = im−1|
q̃n−1 = i1, . . . , q̃n−m = im)

= P (q̃n = i0|q̃n−1 = i1, . . . , q̃n−m = im)

= P (q̃n = i0|q̃n−1 = i1, . . . , q̃n−r = ir). (2.49)

It follows that only the first r digits of the base S representation of state
i matter to the probabilty of the transition to state j, aij (if the transition
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is legal of course. Otherwise aij = 0) and thus there should be only Sr+1

transition probabilities to estimate whereas we have Sm+1 legal transitions.
Note that the condition for a transition to be legal in this case is⌊

i

S

⌋
= j −

⌊
j

Sm−1

⌋
Sm−1. (2.50)

Consider an example in which r = 1, m = 2 and S = 2. In this example qn
has four states {0, 1, 2, 3}, and according to (2.50), which in this example is
given by bi/2c = j − bj/2c2, the transition matrix is of the form

a00 0 a02 0
a10 0 a12 0
0 a21 0 a23

0 a31 0 a33

 . (2.51)

From (2.49) we get that

a00 = P (q̃n = 0|q̃n−1 = 0, q̃n−2 = 0)

= P (q̃n = 0|q̃n−1 = 0, q̃n−2 = 1) = a10, (2.52)

a21 = P (q̃n = 0|q̃n−1 = 1, q̃n−2 = 0)

= P (q̃n = 0|q̃n−1 = 1, q̃n−2 = 1) = a31 (2.53)

and in a similar manner a02 = a12 and a23 = a33. It follows that (2.23) is not
valid in this case because it would yield Sm+1 different transition probabilities
whereas we expect to have only Sr+1 different ones.

We have seen in the previous section that {π̂i}, {b̂i(·)} and {âij} can each
be derived separately, so in this case we only have to maximize the third
term of the RHS of (2.34) because the assumption m > r only affects {aij}.
The reestimation formulas for {πi} and {bi(·)} are as in the case m = r and
given by (2.19) and (2.25) or (2.27).

The reestimation formula for the transition probabilities for this case can
be derived directly by maximizing Q(λ, λ̂), but we shall derive it in a shorter,
less rigorous way. Let us consider the process Xn = f([q̃n, . . . , q̃n−(r−1)]) with
the corresponding probabilities γXn (i′) = P (Xn = i′|{Ol}) and ξXn (i′, j′) =
P (Xn = i′, Xn+1 = j′|{Ol}). According to (2.23), the estimate of the transi-
tion probability aXi′j′ = P (Xn+1 = j′|Xn = i′) is given by

âXi′j′ =

N−1∑
n=1

ξXn (i′, j′)

N−1∑
n=1

γXn (i′)

. (2.54)
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We express now aij in terms of aXi′j′ :

aij = P (q̃n = i0|q̃n−1 = i1, . . . , q̃n−r = ir)

= P (q̃n = i0, . . . , q̃n−(r−1) = ir−1|
q̃n−1 = i1, . . . , q̃n−r = ir)

= P (Xn = f([i0, . . . , ir−1])|Xn−1 = f([i1, . . . , ir]))

= P (Xn = bi/Sm−rc|Xn−1 = bj/Sm−rc) = aXi′j′

where i′ = bi/Sm−rc and j′ = bj/Sm−rc.

It follows that

âij =

N−1∑
n=1

ξXn

(⌊
i

Sm−r

⌋
,

⌊
j

Sm−r

⌋)
N−1∑
n=1

γXn

(⌊
i

Sm−r

⌋) . (2.55)

The quantities ξXn , γ
X
n are not part of the E1HMM framework, so, in order

to make the estimate computable, we express them in terms of ξn, γn:

γXn (i′) = P (Xn = i′|{Ol})

= P

(
qn = i : i′ =

⌊
i

Sr−m

⌋
|{Ol}

)

=

(i′+1)Sm−r−1∑
i=i′Sm−r

P (qn = i|{Ol}) =

(i′+1)Sm−r−1∑
i=i′Sm−r

γn(i).

and

ξXn (i′, j′) = P (Xn = i′, Xn+1 = j′|{Ol})

=

(i′+1)Sm−r−1∑
k=i′Sm−r

P (Xn = i′, Xn+1 = j′, qn = k|{Ol})

=
∑
k

P (Xn+1 = j′, qn = k|{Ol}) =

∑
k

P

(
qn+1 =

⌊
j′

Sr−1

⌋
Sm−1 +

⌊
k

S

⌋
, qn = k|{Ol}

)

=

(i′+1)Sm−r−1∑
k=i′Sm−r

ξn

(
k,

⌊
j′

Sr−1

⌋
Sm−1 +

⌊
k

S

⌋)
.
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We know that the transition probability is zero for illegal transitions so finally
we obtain the reestimation formula for aij, which is given by :

âij =



N−1∑
n=1

k2(i)∑
k=k1(i)

ξn

(
k,

⌊
k

S

⌋
+

⌊
j

Sm−1

⌋
Sm−1

)
N−1∑
n=1

k2(i)∑
k=k1(i)

γn(k)

if

⌊
i

S

⌋
= j −

⌊
j

Sm−1

⌋
Sm−1

0 if

⌊
i

S

⌋
6= j −

⌊
j

Sm−1

⌋
Sm−1

(2.56)
where

k1(i) =

⌊
i

Sm−r

⌋
Sm−r

k2(i) =

(⌊
i

Sm−r

⌋
+ 1

)
Sm−r − 1 = k1(i) + Sm−r − 1.

Note that in this case the inverse transformation is given by

q̃n =
⌊ qn
Sm−1

⌋
. (2.57)

2.2.4 Incorporating additional information

Usually, additional information on the model is known. Any such information
on the high-order model can be modified to fit the first-order one, and be
incorporated in the procedure. For example, we might have a training state
sequence we would like to use for the initial estimation of the parameters.
In this case we apply the transformation (2.13) on the sequence to create
its first-order equivalent. Another example might be some prior knowledge
we have on the transition probabilities. Say we know that ãir...i0 = 0 for
some i0, . . . , ir. In this case we shall set aij = 0 for i, j that satisfy i =
f([i1, . . . , ir]), j = f([i0, . . . , ir−1]).

Summary

A method that transforms high order HMMs into equivalent first order ones
was introduced. Using this method, one can solve the three HMM problems
for any high order HMM, using the well known first order HMM formulation,
by modifying it properly. Given in table 2.1 is a summary of the results
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Table 2.1: A summarising table, details the transformation suitable for each of the three
cases, and the modifications to be made to fit the E1HMM to the transformed model: the
states and the reestimation formulas for each of the model parameters.

m = r m < r m > r
the transfor-
mation

qn = f(Q
r

n) qn = f(Q
r

n) qn = f(Q
m

n )

the inverse
transforma-
tion

q̃n =
⌊ qn
Sr−1

⌋
q̃n =

⌊ qn
Sr−1

⌋
q̃n =

⌊ qn
Sm−1

⌋
the states 0, 1, . . . , Sr − 1 0, 1, . . . , Sr − 1 0, 1, . . . , Sm − 1
π̂i Eq.(2.19) Eq.(2.19) Eq.(2.19)

b̂i(·) Eq.(2.27) or (2.25) Eq.(2.44) or (2.47) Eq.(2.27) or (2.25)

âij Eq.(2.23) Eq.(2.23) Eq.(2.56)

derived in this section. For each of the cases (m = r, m < r and m > r),
the table detailes the transformation, its inverse, and the modifications to
be made to the E1HMM, i.e., the states of the transformed model and the
reestimation formulas for each of the parameters.

2.3 Order selection in high-order HMMs

Addressed now is the problem of order determination for high-order hidden
Markov modeling. To be determined are the order of the hidden state se-
quence r, and the order of observation dependency on the states m. For
the purpose of order selection, we assume that a sample state sequence and a
corresponding observation sequence are given (e.g., training data). There are
several model selection methods in the literature. Most of which share a sim-
ilar structure, based on optimizing a cost function comprised of a likelihood
term and a penalty term that is a function of the number of independent
parameters in the competing model. Two examples are Akaike’s Informa-
tion Criterion (AIC) and the Bayesian Information Criterion (BIC) ([1], [33],
[9]). In this section we apply AIC for determining the model orders. Any
of the other criteria can be chosen to determine the orders, as each of them
possesses different properties, depending on the application and the data
set given. Most of the other criteria are straightforward to use once AIC is
constructed, i.e., once the likelihood and number of parameters have been
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calculated.
AIC, which is based on minimizing the expectation of the Kullback-

Leibler distance, is given by

AIC = −2 log L + 2P (2.58)

where L is the maximized likelihood, obtained by evaluating the likelihood
function at the maximum likelihood estimates of the parameters, and P is
the number of independent parameters of the model. Given a data set and
several competing models, the chosen model is the one with the lowest AIC
value. The other models can be ranked based on their AIC values [9].

The log-likelihood of the high-order HMM is

logP ({q̃n}, {On}) = logP ({On}|{q̃n}) + logP ({q̃n}). (2.59)

For finding r, only the second term of the RHS of (2.59) is relevant, whears
for finding m, only the first term is. We therefore construct AIC for r and
m seperately.

2.3.1 Determining r

Determining r means determining the order of a Markov chain. This subject
has been studied before, and several methods were proposed, e.g. by [27] and
[25]. Here we use AIC for determining r, as suggested by Tong in [18],[35].

The probability of obtaining the state sequence {q̃n}Nn=1 is

P ({q̃n}Nn=1) = P (q̃1)P (q̃2|q̃1)P (q̃3|q̃2, q̃1) · · ·P (q̃N |q̃1, . . . , q̃N−1). (2.60)

For a Markov chain of order r, (2.60) becomes

P ({q̃n}Nn=1) = P (q̃1)P (q̃2|q̃1) · · ·P (q̃r|q̃1, . . . , q̃r−1)
N∏

n=r+1

P (q̃n|q̃n−r, . . . , q̃n−1)

(2.61)
and thus, the log-likelihood is

logP ({q̃n}) =
r∑

n=1

logP (q̃n|q̃1, . . . , q̃n−1) +
N∑

n=r+1

logP (q̃n|q̃n−r, . . . , q̃n−1).

(2.62)
The second term becomes dominant as the sample size N increases, so we
neglect the first term, overlooking initial transients, as they do not provide
any information regarding the order of the state sequence. For the same
reason, the initial state probabilities will be ignored in the parameter count.
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We denote by Nir,...,i0 the number of transitions ir → ir−1 → . . . → i1 → i0
in the sample state sequence. Ignoring the first r terms, the likelihood can
be written as

P ({q̃n}) ≈
∏
ir,...,i0

ã
Nir,...,i0
ir,...,i0

. (2.63)

The maximum likelihood estimate of the transition probability based on
the sample data is

ˆ̃air,...,i0 =
Nir,...,i0

Nir,...,i1

(2.64)

where

Nir,...,i1 =
∑
i0

Nir,...,i0 , (2.65)

and thus the maximized log-likelihood is

log L =
∑
ir,...,i0

Nir,...,i0 log
Nir,...,i0

Nir,...,i1

. (2.66)

A Markov chain of order r with S states has Sr+1 transition probabilities,
among which only Sr+1 − Sr are independent because the probabilities of
transitions terminating in the same state sum to 1, that is,

∑
i0
ãir,...,i0 = 1.

Therefore, AIC here is given by

AIC(r) = −2
∑
ir,...,i0

Nir,...,i0 log
Nir,...,i0

Nir,...,i1

+ 2Sr(S − 1). (2.67)

The value for r to be chosen is the one that minimizes AIC(r), i.e.,

rAIC = arg min
r

AIC(r)

.

2.3.2 Determining m

The relevant likelihood here is the first term of (2.59), and thus, for deter-
mining m we treat {q̃n} as a given. The state sequence order r does not play
any role in determining m. We can write

P ({On}|{q̃n}) = P (O1|{q̃n})P (O2|O1, {q̃n}) · · ·P (ON |{On}N−1
n=1 , {q̃n}),

(2.68)
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and the order m dependency on the states (2.8) implies that

P ({On}|{q̃n}) = P (O1|q̃1)P (O2|q̃1, q̃2) · · ·

· · ·P (Om−1|q̃1, . . . , q̃m−1)
N∏

n=m

P (On|q̃n−(m−1), . . . , q̃n). (2.69)

The log-likelihood is then

logP ({On}|{q̃n}) =
m−1∑
n=1

logP (On|q̃1, . . . , q̃n)+
N∑

n=m

logP (On|q̃n−(m−1), . . . , q̃n).

(2.70)
As the sample size N increases, the second term becomes more dominant and
the first term negligible. For convenience, we use the transformation (2.13)
and define

qmn =
m−1∑
l=0

q̃n−lS
m−1−l. (2.71)

The likelihood can now be written, ignoring the first m− 1 terms, as

P ({On}|{q̃n}) ≈
N∏

n=m

bqmn (On) (2.72)

where bi(On) = P (On|qmn = i).
We distinguish between the cases of discrete valued observations and con-

tinuous valued ones.

Discrete Observations

We assume here that each observation On is drawn from a finite alphabet
{v1, v2, . . . , vK}, according to a probability distribution associated with the
last m states {q̃n−(m−1), . . . , q̃n)}, or equivalently, with the current trans-
formed state qmn . We denote by Nk|i1,...,im the number of apearences of the
succession ii, . . . , im in the sample state sequence {q̃n}, that generated the
observation vk, i.e.,

Nk|i1,...,im = |{n : q̃n−(m−1) = i1, . . . , q̃n = im and On = vk}| (2.73)

where | · | stands for the number of elements in a set. Equivalently, we denote

Nk|i = |{n : qmn = i and On = vk}|, (2.74)
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i.e., the number of times that state i in the transformed sequence {qmn }
generated the observation vk. The likelihood (2.72) can now be written as

P ({On}|{q̃n}) ≈
∏
i,k

b
Nk|i
i (vk). (2.75)

It can be easily verified that the maximum likelihood estimate of bi(vk)
in the discrete case is

b̂i(vk) =
Nk|i

Ni

(2.76)

where Ni =
∑

kNk|i, and thus, the maximized log-likelihood is

log L =
∑
i,k

Nk|i log
Nk|i

Ni

. (2.77)

Each of the Sm state combinations corresponds to a probability distribu-
tion over the observation alphabet. Each of those distributions consists of K
probabilities that sum to one. Therefore, the total number of independent
parameters is Sm(K − 1). AIC here is thus given by

AIC(m) = −2
Sm−1∑
i=0

K∑
k=1

Nk|i log
Nk|i

Ni

+ 2Sm(K − 1), (2.78)

and mAIC = arg minm AIC(m).

Continuous Observations

We assume here that each observation On is a D-dimentional vector drawn
from a Gaussian mixture pdf associated with the lastm states {q̃n−(m−1), . . . , q̃n)},
or equivalently, with the current transformed state qmn . Therefore, the obser-
vation pdf for state i is of the form

bi(x) =
K∑
k=1

cikg(x;µik, Uik) (2.79)

where cik is the mixture coefficient for the kth mixture in state i and g(x;µik, Uik)
is the D-dimentional Gaussian pdf with mean vector µik and covariance ma-
trix Uik for the kth mixture component in state i:

g(x;µik, Uik) =
1√

(2π)D detUik
e−

1
2

(x−µik)TU−1
ik (x−µik). (2.80)
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In the case of i.i.d. measurments drawn from a GM, the Expectation-
Maximization (E-M) algorithm is commonly used to provide the maximum
likelihood estimates of the parameters [8]. In our case, the measurments
(observations) are independent (given the state sequence) but are not identi-
cally distributed. Only the observations that were generated from the same
state are i.i.d.. Therfore, a proper modification has to be made to the E-M
formulas of the i.i.d GM. The complete derivation for the i.i.d case is given in
(e.g.) [8]. We shall not completely rederive the E-M equations for this case,
but rather follow the derivation in [8], pointing out where our case differs.

First, we define the following:

• {yn} will denote the mixture component indicator sequence, i.e.,

P (yn = k|qmn = i) = cik. (2.81)

Given the state sequence {qmn }, the yn’s are independent and each yn
depends only on the current state qmn .

• For convenience, we define the following parameter sets

Θ = {{cik}, {µik}, {Uik}} (2.82)

θik = {µik, Uik}. (2.83)

• The expected value, with respect to the current set of parameters Θ′,
of the log-likelihood, given the obseved data

Q(Θ,Θ′) = EΘ′ logP ({On}, {yn}|{qmn }; Θ)|{On}. (2.84)

At each iteration, the E-M algorithm maximizes Q(Θ,Θ′) over Θ where
Θ′ are the current parameter estimates. The optimized parameters Θ are
then used as the current estimats in the next iteration.

Expanding P ({On}, {yn}|{qmn }; Θ) gives

P ({On}, {yn}|{qmn }; Θ) = P ({On}|{yn}, {qmn }; Θ)P ({yn}|{qmn }; Θ)

=
∏
n

cqmn yng(On; θqmn yn), (2.85)

and thus Q(Θ,Θ′) can be written as

Q(Θ,Θ′) =
∑

y1,...,yN

P ({yn}|{qmn }, {On}; Θ′) logP ({On}, {yn}|{qmn }; Θ)

=
∑

y1,...,yN

P ({yn}|{qmn }, {On}; Θ′)
∑
n

log(cqmn yng(On; θqmn yn))
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=
∑
n

∑
yn

log(cqmn yng(On; θqmn yn))
∑

yn′:n′ 6=n

P ({yn}|{qmn }, {On}; Θ′)

=
∑
n

∑
yn

log(cqmn yng(On; θqmn yn))P (yn|{qmn }, {On}; Θ′)

=
∑
n

K∑
k=1

log(cqmn kg(On; θqmn k))P (yn = k|qmn , On; Θ′)

=
Sm−1∑
i=0

∑
n:qmn =i

K∑
k=1

log(cikg(On; θik))P (yn = k|qmn = i, On; Θ′). (2.86)

The E-M formulas are derived by maximizing Q(Θ,Θ′) over Θ subject to
the stochastic constraint on the mixture coefficients∑

k

cik = 1 ∀i ∈ {0, 1, . . . , Sm − 1}. (2.87)

By expanding (2.86) we get

Q(Θ,Θ′) =
Sm−1∑
i=0

∑
n:qmn =i

K∑
k=1

log(cik)Pi(yn = k|On; Θ′)

+
Sm−1∑
i=0

∑
n:qmn =i

K∑
k=1

log(g(On; θik))Pi(yn = k|On; Θ′) (2.88)

where Pi(yn = k|On; Θ′) = P (yn = k|qmn = i, On; Θ′). It follows that the
formulas for cik and for µik, Uik can be derived separately. The formula for
cik is obtained by using Lagrange multipliers:

∂

∂cik

(
Q(Θ,Θ′)−

∑
j

ηj

(∑
l

cjl − 1

))
= 0⇒∑

n:qmn =i

Pi(yn = k|On; Θ′) = ηicik (2.89)

where the ηi’s are the Lagrange multipliers. Summing both sides over k yields

ηi = Ni (2.90)

where Ni is the number of apearences of state i in the sequence {qmn }. The
formulas for µik and Uik are obtained by unconstrained maximization of
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Q(Θ,Θ′) (the symmetry and positive-definiteness of the covariance matrices
are satisfied automatically):

∂Q(Θ,Θ′)

∂µik
=

∂

∂µik

∑
n:qmn =i

log(g(On; θik))Pi(yn = k|On; Θ′) = 0 (2.91)

∂Q(Θ,Θ′)

∂Uik
=

∂

∂Uik

∑
n:qmn =i

log(g(On; θik))Pi(yn = k|On; Θ′) = 0 (2.92)

The above equations, excluding the range of the summing index n, are iden-
tical to their equivalents in the i.i.d. case (This is clear since the observations
are i.i.d for a given i). Therefore, the formulas for µik and Uik are obtained
by modifying the range of n in the i.i.d. case equations. We obtain, then,
the following procedure:

E-step

Pi(yn = k|On; Θ′) =
cikg(On;µ′ik, U

′
ik)

K∑
l=1

cilg(On;µ′il, U
′
il)

(2.93)

M-step

cnewik =
1

Ni

∑
n:qmn =i

Pi(yn = k|On; Θ′) (2.94)

µnewik =

∑
n:qmn =i

Pi(yn = k|On; Θ′)On∑
n:qmn =i

Pi(yn = k|On; Θ′)
(2.95)

Unew
ik =

∑
n:qmn =i

Pi(yn = k|On; Θ′)(On − µnewik )(On − µnewik )T∑
n:qmn =i

Pi(yn = k|On; Θ′)
(2.96)

The likelihood (2.72) in this case becomes

L =
∏
i

∏
n:qmn =i

bi(On) (2.97)

and is maximized by substituting the parameters obtained by the E-M algo-
rithm.

The number of independent parameters is as follows
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• SmK mixture coefficients that sum to one for each state, and thus there
are Sm(K − 1) independent ones.

• SmK mean vectors, each contains D elements. therefore: SmKD mean
vector parameters.

• SmK covariance matrices, each contains D2 entries, among which only
D(D + 1)/2 (only upper/lower triangle) are independent due to sym-
metry.

The number of independent parameters sums to Sm(K−1 +KD+KD(D+
1)/2) = Sm(K(D + 1)(D + 2)/2− 1), and finally, AIC here is

AIC(m) = −2
Sm−1∑
i=0

∑
n:qmn =i

log bi(On) + Sm(K(D + 1)(D + 2)− 2). (2.98)

2.3.3 Summary

A method that transforms high-order HMMs into equivalent first-order ones
was introduced. Using this method, one can solve the three HMM prob-
lems for any high-order HMM by applying the well known first-order HMM
formulation. This is done by using a E1HMM with Sν states and the reesti-
mation formulas given in Fig. 2.1. The high-order hidden state sequence is
then obtained by applying the inverse transformation on the first-order one
produced by the E1HMM. We assumed in this work that the observation dis-
tribtions in the discrete case are over a finite alphabet with all probabilities
unknown. This can be easily extended to cases of parametric distributions
(e.g. Poisson).

Discussed was also the problem of order selection, that naturally arises
when approaching a problem with hidden Markov modeling. AIC was applied
to determine the model orders r and m. Further study can be made on
investigating the consistency in estimating m.

In the next chapter we apply the HMM to detect rain in power measure-
ments from cellular networks.
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Chapter 3

Using the HMM to detect wet
and dry periods

The attenuation is affected by a variety of physical phenomena. Therefore, to
estimate rain, we try to seperate the rain induced attenuation from the total
attenuation. To differentiate between wet and dry periods, given a sequence
of RSL measurements from a link, a HMM was employed. In this chapter,
we first apply the first-order HMM (E1HMM) to the problem and examine
the results. Next, we examine whether the first-order assumptions hold in
our problem. Then, we apply the High-order HMM and compare the results
to those obtained by the first-order HMM. An attempt to estimate the rain
induced attenuation using blind source separation (BSS) techniques was also
made, and is detailed in appendix A.

The idea of modeling the temporal occurence of rain as a Markov chain
was proposed and studied in the past (e.g., by [17] and [18]). However, only
daily occurences of rain were studied, and higher temporal resolutions (e.g,
of 1 minute, as in our case) were not discussed.

3.1 Using the first order HMM

Our interest is in identifying the wet and dry periods. Therefore, we define
the hidden state sequence as the rain indicator series:

qn = In =

{
0 , no rain at time n
1 , rain at time n

. (3.1)

The RSL measurements are the observations generated by the state sequence,
i.e., On = Pn (see (1.3)). In some of the links, both ends transmit and recieve
and thus there are two sets of RSL measurments. In that case, where we

35



have two opposite links, On is a two-dimentional vector containing both RSL
measurements.

3.1.1 Initializing the HMM

The third HMM problem P3 (see section 2.1.2) is the parameter estimation
problem. The procedure for solving this problem is detailed in [29], and
is outlined in section 2.2. That procedure is known as the Baum-Welch
reestimation algorithm, and it involves iterative update and improvement of
the model parameters. The reestimation procedure is guaranteed to converge
to a local maximum of P ({On};λ) and thus it is sensitive to the initial guess
of the model parameters λ.

For a decent initial estimate of the parameters, an initial state sequence
(rain indicator series) is needed. One option is to use a nearby rain gauge to
identify the wet and dry periods. However, since a rain gauge is not always
close at hand, we would rather use a method based on the RSL data. In
the case of opposite links, the correlation between attenuations at the two
links tends to be high in times of rain because the rain causes well defined
attenuation changes in a similar fashion for both links (usually the frequencies
of the links are close) [31]. Therefore, in the case of opposite links, the local
correlation coefficient between the two links at each time step was computed,
and was compared to a threshold to determine the initial wet and dry periods.
The threshold, and the segment length (in minutes) on which the correlation
coefficient was computed, were determined experimentally. A threshold of
0.6 was used and a segment length of 9 minutes.

In the presence of rain, the attenuation tends to vary more rapidly [20].
Therefore, in the cases where an opposite link was not available, the standard
deviation of the RSL was computed at each time step on a segment length
of 9 minutes, and was compared to a threshold to determine the wet and
dry periods. Since the links vary in their RSL values, a different threshold
should be assigned to each link. Therefor, we took the threshold to be the
mean of the RSL’s standard deviation.

In the case of HMMs with continuous observations, further segmentation
is needed for each state to distinguish between the mixture components of
the pdf (see section 2.2). In that case, the K-means segmentation algorithm
was used [34].

3.1.2 Results

Examined here are the results obtained by applying the first-order HMM
on a series of RSL measurements from a single link, on a time period of 16
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hours. The two ends of the link are on the Ramle switch and in Ramat-Dan.
The rain indicator series produced by the HMM is compared to that of a
rain gauge located on the Ramle switch. Since the sequences to be compared
are binary, a natural selection for a comparison metric is the normalized
Hamming distance, denoted here by d, i.e.,

d =
number of entries that are different

length of sequence
(3.2)

Shown in Fig 3.1 are the series of RSL measurements, the rain indicator
produced by the HMM, the rain gauge measurments and the ”real” rain
indicator, that is, zero when the rain gauge measures zero rain, and one
otherwise.

The distance between the link rain inidcator and the rain gauge one is
d = 129/939 ≈ 0.137.

Notice that the rain gauges and microave links provide measurements of
different nature. The rain gauges provide a point measurement while the links
measure along a path. Therefor, identical results (d = 0) are not possible
because some of the rain measured by the links cannot be detected by the
gauges.

3.2 Does the first order assumption hold?

Eventhough the first-order HMM produces decent results in our problem, we
examine here weather the first order assumptions actually hold. As suggested
in section 2.3, ee use Akaike’s Information Criterion (AIC) to determine the
order of the state sequence r, and the order of the observation dependency
m. The values for r and m are determined by applying AIC to sample data
comprised of a state sequence and the corresponding observation sequence.

A sample data of 16 hours was used here to determine the orders. For
choosing r, we applied AIC on the rain indicator of the Ramle switch rain
gauge. The resulting minimum AIC estimate (MAICE) here is r = 5. For
choosing m we used the rain indicator as the state sequence, and the mea-
sured RSL (from the Ramle switch - Ramat Dan link) as the observation
sequence. The resulting MAICE is m = 3. Shown in Fig.3.2 are AIC values
for both cases. Notice that AIC values for r are very similar between 2 and
5. This implies that values of r greater than 2 will not improve model fitness
significantly.

AIC was applied to several other data sets of links and gauges to estimate
the orders. The MAICE of the Markov order of all the rain gauge sequences
ranged between r = 3 and r = 5. The MAICE of the state dependency
orders ranged between m = 2 and m = 4.
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Figure 3.1: Results of a 16 hour long data. a: the RSL measurments. b: the rain
indicator produced by the E1HMM. c: the rain measured by the rain gauge. d: rain
indicator of the rain gauge.

3.3 Applying the higher order HMM

We applied the high-order HMM, which was described in section 2.2, to the
data for detecting wet and dry spells. The data used is the same as in the
previous section, and again, the observations are the RSL measurements, and
the hidden state sequence is the rain indicator. The initialization procedure
used is similar to the one described in 3.1.1. In this case we applied the
transformation (2.13) to the initial state sequence to obtain the high-order
initial state sequence, as suggested in 2.2.4.

Applying HMMs of higher orders inroduces problems of different sorts.
For example, we noticed that high-order HMMs are very sensitive to the
initial parameter estimates, compared with the first-order HMM. This sensi-
tivity increases as we increase the orders. Another two issues are the running
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Figure 3.2: AIC values for the order of the state sequence r, and the order of the
observation dependency m. For choosing r, AIC eas applied on the rain indicator produced
the rain gauge. For choosing m we used the rain indicator as the state sequence, and the
measured RSL as the observation sequence. The minimum AIC estimate (MAICE) in
both cases is indicated by *.

Table 3.1: Hamming distance between the rain indicator of the rain gauge, and the one
obtained by applying the high-order HMM to the RSL data, for different values of r and
m.

(r,m) Hamming distance d

(1,1) 137 0.146
(2,1) 133 0.142
(3,2) 130 0.138

time and the number of parameters to estimate. Both grow large with the or-
der. The latter, however, is already taken into acount in AIC, when selecting
the orders.

3.3.1 Results

Table 3.1 details the results obtained by applying the high-order HMM on
the data. Shown, for each of the (r,m) pairs tested, are both the Hamming
distance (number of different entries) and the normalised one, between the
resulting rain indicator and that of the rain gauge. Figure 3.3 shows the rain
indicators obtained by applying HMMs of different orders, against that of
the rain gauge.

Eventhough the ”right” order of our model is not first, we see that the
improvement obtained by increasing the orders of the HMM is negligible,
and does not justify the increased complexity of the algorithm.
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rain gauge.
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Chapter 4

Estimating rain

4.1 Smoothing the Data

The RSL data recieved by the cellular provider is quantized in a resolution
of 1dB (rounded). When converting to rain-rate, this results in an unnatural
and irregular behaviour. Therefore, a smoothing procedure, described in this
section, was applied to the data.

Let us denote the rounding operation by R(·). Assume we are given a
quantized version of a signal, Yn = R(Xn). The idea is to optimize some
smoothness criterion while keeping the reconstructed signal X̂n loyal to the
measurements. Two approaches were used:

4.1.1 Smoothing by constrained nonlinear optimiza-
tion

Given Yn, the quantized version of the signal Xn, The smoothness criterion
chosen for the dequantization is of the form∑

n

|X̂n − X̂n−1|c (4.1)

where c > 0. The dequantized signal X̂n is obtained, then, by minimizing
(4.1) subject to the fidelity constraint

R(X̂n) = Yn ∀n. (4.2)

Figure 4.1 shows the result obtained by applying nonlinear smoothing on
a 80 minute RSL sequence, with c = 2. The RSL sequence itself was used as
the initial guess for the optimization.
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Figure 4.1: Smoothing by constrained nonlinear optimization with c = 2.

Further study can be made on choosing the right value for c, and the
optimization algorithm to be used.

Results obtained by the nonlinear optimization have perfect fidelity to
the measurments. However, the optimization is computationally expensive
and sensitive to the initial guess. The next approach trades off fidelity in
favor of lower running time and initial guess insensitivity.

4.1.2 Smoothing by linear filtering

Here, relaxing the constraint (4.2), we minimize the following functional

F =
∑
n

(xn − xn−1)2 + α
∑
n

(xn − Yn)2. (4.3)

where α > 0 represents the weight given to the fidelity term (the second term
of (4.3)), compared to that given to the smoothness term. The dequantized
signal X̂n is obtained by

{X̂n} = arg min
{xn}

F. (4.4)

Differentiating F with respect to xm yields

∂F

∂xm
= 2(2 + α)xm − 2(xm−1 + xm+1)− 2αYm (4.5)
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and setting the derivative to zero

∂F

∂xm
= 0 ⇒ (4.6)

(2 + α)xm − (xm−1 + xm+1) = αYm. (4.7)

Applying the Z-transform gives the dequantization filter

H(z) =
X̂(z)

Y (z)
=

α

2 + α− (z−1 + z)
(4.8)

or

H(ejω) =
α

α + 2(1− cosω)
. (4.9)

Notice that when α = 0 (zero weight to fidelity) the filter outputs the
smoothest signal possible (zero) whatever the measurements. When α→∞
(zero weight to smoothness) the filter equals one, and outputs the measure-
ments. Fig 4.2 shows the frequency response of the dequantization filter
H(ejω) for different values of α. Notice that as α grows larger, less weight
is given to smoothness, and the filter changes from ’Low-Pass’ to ’All-Pass’.
Shown in Fig. 4.3 is the dequntized RSL obtained by linear filtering with
α = 2. Further study can be made on choosing α.

4.2 Converting to rain rate

We denote the rain indicator produced by the HMM by In. The set of dry
times is denoted by S0, i.e.,

S0 = {n : In = 0}. (4.10)

At dry times, the rain induced attenuation equals zero, i.e., An = 0 ∀n ∈ S0.
Therefore, the zero-rain attenuation Zn (see eq. (1.4)) at dry times is equal
to the total attenuation (which is given by (1.3)), i.e.,

Zn = Atotaln ∀n ∈ S0 (4.11)

At times of rain, i.e., for n /∈ S0, the values of Zn were interpolated from
{Zn, n ∈ S0} using cubic interpolation. Then, the rain induced attenuation
is computed using (1.4):

An = Atotaln − Zn, (4.12)

and the rain rate by (1.2).
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Figure 4.4: Rain estimated from link against measurements from rain gauge.

4.3 Results

Shown in Fig. 4.4 is the rain estimated from the link measurements against
the rain meausured by a rain gauge located on one end of the link. The data
used is the same as in section 3.1.2. The rain indicator was created using the
first-order HMM, and the RSL data was smoothed (after the HMM) using
linear filtering with α = 2. The parameters used for eq. (1.2) are as follows:
the length of the link is L = 2.56km. The values for a and b, as suggested
by [20], were calculated using

a =

{
4.21 · 10−5f 2.49 , 2.9 ≤ f ≤ 54
4.09 · 10−2f 0.699 , 54 ≤ f ≤ 180

(4.13)

b =

{
1.41f−0.0779 , 8.54 ≤ f ≤ 25
2.63f−0.272 , 25 ≤ f ≤ 164

(4.14)

where f [GHz] is the frequency of the link, in our case 17.81GHz.
The method above was used for geophysical analysis of several rain events

between the years 2006-2008 in different locations across Israel. For exam-
ple, the average correlation (over the rain events analyzed) between the rain
measured by the Ramle switch rain gauge, and the rain estimated from the
links is 0.77 for 1min resolution, and 0.85 for 10min. In a rain gauge located
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in west Ramle, the correlations are 0.64 for 1min, and 0.83 for 10min. The
full geophysical analysis of the reults obtained by the method can be found
in [30].
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Chapter 5

Summary

Discussed was high-order hidden Markov modeling. A method was suggested
that makes the well known first-order HMM algorithm applicable to models of
higher orders, by transorming them into first-order equivalents. Furthermore,
the modifications necessary for the first-order HMM algorithm to fit the
transformed model were detailed. To complete the discussion, order selection
for high-order hidden Markov modeling was addressed. Given a sample set of
data, a model selection criterion can be used to determine the optimal orders
for modeling the problem as an HMM. The afformentioned method can be
then applied to solve the problem using the first-order HMM algorithm.

Suggested also was an HMM based method for rain estimation from RSL
measurements in cellular networks. We see that the suggested method pro-
duced good results in terms of comparison with rain measured by rain gauges.
The method, thus, can provide a mean to measure rainfall with high tem-
poral and spatial resolution, compared with the existing methods of rain
gauges and weather radars. Furthermore, since the method relies on data
from existing cellular networks, it does not involve additional maintenance,
supervision or cost.

By using AIC, we saw that modeling our problem as a first-order HMM
introduces model mismatching. Despite that, we saw that the improvement
in detecting rain, obtained by applying HMMs of higher orders is negligi-
ble compared to the complexity and increased running time they introduce.
Further study can be made on expanding the use of the HMM to analyze
links with temporal resolution coarser than 1min, and to analyze several links
simultaneously.
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Appendix A

Rainfall estimation using BSS

The problem addressed is the estimation of rainfall intensity using power
measurements from an existing network of microwave links. Since the atten-
uation is affected by a variety of physical phenomena, in order to estimate
rainfall intensity, our first goal is to separate the rain induced attenuation
from the total attenuation. This chapter presents selected preliminary ex-
perimental results of an attempt to apply Blind Source Separation (BSS) [11]
to the problem at hand.

A.1 A brief overview of BSS

Given a set of observed signals, assuming each signal in the set is a mixture,
or a linear combination of a set of independent signals (the ’sources’), BSS
is an emerging technique aiming at recovering the unobserved signals from
the observed mixtures, exploiting only the assumption of mutual indepen-
dence between the signals. The simplest BSS model assumes the existence of
N independent signals s1(t), . . . , sN(t) and the observation of as many mix-
tures x1(t), . . . , xN(t), these mixtures being linear and instantaneous. This
is compactly represented by the mixing equation

x(t) = As(t) (A.1)

where s(t) = [s1(t), . . . , sN(t)]T is the N × 1 column vector collecting the
sources, x(t) similarly collects the observed signals, and A is the N × N
mixing matrix containing the unknown mixture coefficients [11]. The BSS
problem consists in recovering the source vector s(t) using only the observed
data x(t), the assumption of independence between the entries of the input
vector s(t) and possibly some a priori information about the probability
distribution of the inputs. It can be formulated as the computation of an
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N ×N ’separating matrix’ B whose output y(t)

y(t) = Bx(t) (A.2)

is an estimate of the vector s(t) of the source signals.

A.2 Applying BSS

We denote the RSL of a link, recorded at time n, by Pn. Given that the trans-
mitted signal level of the link is a constant denoted by P t, the attenuation
at time n is given by

An[dB] = −10 log10

Pn[W]

P t[W]
= P t[dBm]− Pn[dBm]. (A.3)

The data we possess includes only the RSL Pn. The attenuation is obtained
from the measured RSL by subtracting the transmitted power P t, which is
a constant affecting only the ”DC level” of An. Since the transmitted power
is not available, we used arbitrarily P t = maxnPn.

We assume that each attenuating physical phenomenon is realized by a
factor multiplying the power level, i.e. Pn[W] = P t[W]

∏
i ai where ai is

the attenuation caused by the corresponding phenomenon. Thus, the total
attenuation in dB is given by −

∑
i 10 log10 ai = −

∑
i ai[dB]. This justifies

the use of the BSS model that assumes a linear relation between the sources
(contributions of different phenomena to the attenuation) and the observa-
tions (RSL or total attenuation in dB of the link). Since the different links
vary in their physical properties, e.g., location, direction, carrier frequency
and polarization, every phenomenon affects differently on each link. These
differences are expressed by the mixing coefficients populating the mixing
matrix A, which is assumed to be time invariant.

A.3 Experimental results

A preliminary experiment, addressing the separation of rainfall-induced at-
tenuation from other attenuation sources, was conducted by applying BSS on
several links. The results were obtained by using ”icalab”, a BSS toolbox for
MATLAB that features a variety of BSS algorithms [13]. Each input signal
used is the attenuation of the corresponding link, normalized by the length
of the link, i.e., the input attenuation signal of each link is given by

An = − 1

L
(Pn −max

l
{Pl}) (A.4)
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Figure A.1: Map of few of the links in the network.

where Pn[dBm] is the recorded RSL of the link at time n, and L[km] is the
length of the link.

The data used is from several links in the Ramle-Lod area. Figure A.1
illustrates the relative locations of the links analyzed. The records are in 1min
temporal resolution, of a 16 hour long rain event took place on December
26th 2006.

Figure A.2 shows the results obtained by using SOBI (Second Order Blind
Identification) algorithm [6] on two opposite links. Figures A.3-A.5 shows fur-
ther results obtained by applying the JADEop [10] and SOBI algorithms on
different sets of links. Looking at the rain measured by a nearby rain gauge
(Fig. 4.4), one can see that in each of the figures A.2-A.5, one of the esti-
mated sources captures the behaviour of the rainfall experienced by the link.
While the results indicate on the promising potential of BSS to filter out the
rain-induced attenuation, further research is still necessary to identify other
sources as natural phenomena (humidity, fog, scintillation effects, measure-
ment noises, etc) and to deal with practical problems, as the quantization of
the RSL measurements, and scaling.
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